the reaction (Table 2, entries 1À9). In general, the electron-
donating group has a positive effect on the yield (Table 2,
entries 1À6 vs 7À9). On the other hand, the steric effects of
substituents on the aromatic rings also had some influence on
the reaction. A heteroaryl substrate was also efficiently trans-
formed, affording the product 2p in moderate yield (Table 2,
entry 15). The absolute configuration of 2a was determined by
single-crystal X-ray diffraction analysis (CCDC 918566).
As shown in Table 2, the homodimerization of aromatic
methyl ketone has been demonstrated as a step-economic
method for symmetric 1,4-enedione synthesis. It would be
more valuable if the present reaction system could be
applied to unsymmetric 1,4-diaryl substituted 1,4-ene-
dione synthesis, since an unsymmetric 1,4-enedione moiety
is an important structural feature found in many biologi-
cally relevant compounds.12 However, the rapid and
stereoselective synthesis of these units remain an ongoing
syntheticchallenge. Itwas found thata minor modification
of the standard reaction conditions led to the formation of
heterodimerized products 5aÀ5l in synthetically useful
yields, in which a 2-fold excess of one ketone over the other
was employed to facilitate heterodimerization. As presented
in Table 3, both electron-withdrawing and -donating func-
tionalities on the aromatic ring of methyl ketones were
compatible with this heterodimerization reaction, yielding
5aÀ5l in 58À83% yields.
reveals that high pressure mercury (200 W) and degassed
Et2O are needed.13 Herein, we described a photoisomeriza-
tion of E-1,4-enedione into the Z-isomer by irradiation with
white light (23 W) at rt. As illustrated in Table 4, a series of
symmetric and unsymmetric E-1,4-enediones with different
substituents on the aromatic ring underwent the photoisome-
rization smoothly, yielding Z-1,4-enediones 6aÀ6i with high
to excellent E/Z photoconversions. The absolute configura-
tion of 6a was determined by single-crystal X-ray diffraction
analysis (CCDC 918565). Compared to the previously re-
ported method, the present protocol may be more appealing
for laboratory applications due to its operational simplicity.14
Table 4. Scope of the Photoisomerization Reactiona
entry
R1
C6H5
R2
C6H5
product
yield (%)b
1
2
3
4
5
6
7
8
9
6a
6b
6c
6d
6e
6f
99
93
97
81
88
87
90
89
81
4-MeC6H4
4-iBuC6H4
4-MeOC6H4
3-MeOC6H4
3-FC6H4
4-MeC6H4
4-iBuC6H4
4-MeOC6H4
3-MeOC6H4
3-FC6H4
C6H5
4-MeOC6H4
4-MeOC6H4
4-MeOC6H4
6g
6h
6i
4-nBuC6H4
4-FC6H4
Table 3. Scope of the Heterodimerization Reactiona
a The reactions were carried out with 5 (0.3 mmol), solvent (2.1 mL,
EtOAc/Hex = 1:6) by irradiation with 23 W of white light at rt for 5 h.
b Isolated yield.
entry
R1
C6H5
R2
product
yield (%)b
To gain insight into the mechanism of this dimerization re-
action, a series of control experiments were set up (see eqs 1À
3 in the Supporting Information for details). The control
1
4-MeOC6H4
4-MeOC6H4
4-MeOC6H4
4-MeOC6H4
4-MeOC6H4
4-MeOC6H4
4-MeOC6H4
4-MeOC6H4
4-MeOC6H4
4-nBuC6H4
4-nBuC6H4
2-thio
5a
5b
5c
5d
5e
5f
83
65
62
58
72
65
61
74
70
58
70
63
2
4-MeC6H4
3-MeC6H4
2-MeC6H4
4-FC6H4
3-FC6H4
2-FC6H4
4-nBuC6H4
4-iBuC6H4
C6H5
3
4
€
(13) (a) Zirnmerrnan, H. E.; Durr, H. G.; Givens, R. S.; Lewis, R. G.
5
J. Am. Chem. Soc. 1967, 89, 1863. (b) Chien, C. S.; Kawasaki, T.;
Sakamoto, M.; Tamura, Y.; Kita, Y. Chem. Pharm. Bull. 1985, 33, 2743.
(14) For selected examples on photoinduced organic reactions, see:
(a) Zhu, S. Q.; Das, A.; Bui, L.; Zhou, H. J.; Curran, D. P.; Rueping, M.
J. Am. Chem. Soc. 2013, 135, 1823. (b) Zou, Y. Q.; Lu, L. Q.; Fu, L.;
Chang, N. J.; Rong, J.; Chen, J. R.; Xiao, W. J. Angew. Chem., Int. Ed.
2011, 50, 7171. (c) Larraufie, M. H.; Pellet, R.; Fensterbank, L.; Goddard,
J. P.; Lacote, E.; Malacria, M.; Ollivier, C. Angew. Chem., Int. Ed. 2011, 50,
4463. (d) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011,
40, 102. (e) Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785. (f) Nicewicz,
D. A.; MacMillan, D. W. D. Science 2008, 322, 77.
(15) For selected reviews and examples on I2-catalyzed reactions, see:
(a) Uyanik, M.; Ishihara, K. ChemCatChem 2012, 4, 177. (b) Parvatkar,
P. T.; Parameswaran, P. S.; Tilve, S. G. Chem.;Eur. J. 2012, 18, 5460.
(c) Zhu, Y. P.; Liu, M. C.; Jia, F. C.; Yuan, J. J.; Gao, Q. H.; Lian, M.;
Wu, A. X. Org. Lett. 2012, 14, 3392. (d) Wei, W.; Shao, Y.; Hu, H. Y.;
Zhang, F.; Zhang, C.; Xu, Y.; Wan, X. B. J. Org. Chem. 2012, 77, 7157.
(e) Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2011, 133, 13577. (f) Gao,
M.; Yang, Y.; Wu, Y. D.; Deng, C.; Cao, L. P.; Meng, X. G.; Wu, A. X.
Org. Lett. 2010, 12, 1856. (g) Yin, G. D.; Zhou, B. H.; Meng, X. G.; Wu,
A. X.; Pan, Y. J. Org. Lett. 2006, 8, 2245. For selected examples of
hypervalent iodine catalysis, see: (h) Cho, S. H.; Yoon, J.; Chang, S.
J. Am. Chem. Soc. 2011, 133, 5996. (i) Antonchick, A. P.; Samanta, R.;
Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 8605. (j)
Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49,
2175. (k) Miyamoto, K.; Sei, Y.; Yamaguchi, K.; Ochiai, M. J. Am.
Chem. Soc. 2009, 131, 1382. (l) Dohi, T.; Yoshimura, A. M.; Morimoto,
K.; Tohma, H.; Kita, Y. Angew. Chem., Int. Ed. 2005, 44, 6193.
6
7
5g
5h
5i
8
9
10
11
12
5j
4-FC6H4
4-FC6H4
5k
5l
a The reactions were carried out with 3 (0.5 mmol), 4 (0.25 mmol), I2
(2 equiv), CuBr2 (0.2 equiv), and DMF (dry, 0.5 mL) at 80 °C for 20 h.
b Isolated yield.
As shown above, the symmetric and unsymmetric 1,4-
enediones can be synthesized in complete E-selectivity under
the I2/CuBr2 reaction system. We wondered whether the
E-1,4- enedione could be transformed into the Z-isomer with
a rapid and practical protocol. Careful inspection of the
literature describing E/Z isomerization of 1,4-enedione
(12) (a) Seto, H.; Cary, L. W.; Tanabe, M. J. Chem. Soc., Chem.
Commun. 1973, 867. (b) Ballini, R.; Astolfi, P. Liebigs Ann. 1996, 1879.
Org. Lett., Vol. XX, No. XX, XXXX
C