Communication
Dalton Transactions
under retention of configuration to Δ-[Ru(bpy)(pp)(pp′)]-
(PF6)2.14 The thioether substituent exerts a neighboring group
effect which is essential for achieving high yields and high dia-
stereoselectivity. This synthetic route is attractive for the con-
venient asymmetric synthesis of non-racemic ruthenium
polypyridyl complexes starting with readily accessible ruthe-
nium benzene half-sandwich complexes as demonstrated for
the enantioselective synthesis of one representative tris-hetereo-
leptic ruthenium polypyridyl complex. Finally, this study
culminated in what we believe is the first example of a highly
asymmetric synthesis of an osmium(II) polypyridyl complex.
5 (a) E. Meggers, Chem.–Eur. J., 2010, 16, 752; (b) L. Gong,
Z. Lin, K. Harms and E. Meggers, Angew. Chem., Int. Ed.,
2010, 49, 7955.
6 For an example of a recently reported novel ruthenium pre-
cursor complex, see: R. Vadavi, E. D. Conrad,
D. I. Arbuckle, T. S. Cameron, E. Essoun and
M. A. S. Aquino, Inorg. Chem., 2011, 50, 11862.
7 For examples of the thermal displacement of η6-coordi-
nated arenes in ruthenium half-sandwich complexes, see
for example: (a) D. A. Freedman, D. E. Janzen and
K. R. Mann, Inorg. Chem., 2001, 40, 6009; (b) X. L. Lu,
J. J. Vittal, E. R. T. Tiekink, G. K. Tan, S. L. Kuan, L. Y. Goh
and T. S. A. Hor, J. Organomet. Chem., 2004, 689, 1978;
(c) D. E. Janzen, X. Wang, P. W. Carr and K. R. Mann, Inorg.
Chim. Acta, 2004, 357, 3317; (d) D. A. Freedman, S. Kruger,
C. Roosa and C. Wymer, Inorg. Chem., 2006, 45, 9558;
(e) S. Y. Ng, J. Tan, W. Y. Fan, W. K. Leong, L. Y. Goh and
R. D. Webster, Eur. J. Inorg. Chem., 2007, 3827; (f) K.-L. Wu,
H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu and
P.-T. Chou, Chem. Commun., 2010, 46, 5124; (g) Z. Yu,
H. M. Najafabadi, Y. Xu, K. Nonomura, L. Sun and L. Kloo,
Dalton Trans., 2011, 40, 8361.
8 For examples of diastereoselective coordination chemistry
with η6-benzene ruthenium half-sandwich complexes, see:
(a) M. Seitz, A. Kaiser, D. R. Powell, A. S. Borovik and
O. Reiser, Adv. Synth. Catal., 2004, 346, 737; (b) L. Gong,
C. Müller, M. A. Celik, G. Frenking and E. Meggers, New
J. Chem., 2011, 35, 788.
9 (a) L. Gong, S. P. Mulcahy, K. Harms and E. Meggers, J. Am.
Chem. Soc., 2009, 131, 9602; (b) L. Gong, S. P. Mulcahy,
D. Devarajan, K. Harms, G. Frenking and E. Meggers, Inorg.
Chem., 2010, 49, 7692.
Acknowledgements
We are grateful for support from the National Science Foun-
dation of P. R. China, the “National Thousand Plan” Foun-
dation of P. R. China, and the “985 Program” of the Chemistry
and Chemical Engineering disciplines of Xiamen University.
Notes and references
1 A. Werner, Ber. Dtsch. Chem. Ges., 1911, 44, 1887.
2 (a) M. J. Hannon, Chem. Soc. Rev., 2007, 36, 280;
(b) B. M. Zeglis, V. C. Pierre and J. K. Barton, Chem.
Commun., 2007, 4565; (c) F. R. Keene, J. A. Smith and
J. G. Collins, Coord. Chem. Rev., 2009, 253, 2021;
(d) H.-K. Liu and P. J. Sadler, Acc. Chem. Res., 2011, 44, 349.
3 (a) L. Feng, Y. Geisselbrecht, S. Blanck, A. Wilbuer,
G. E. Atilla-Gokcumen, P. Filippakopoulos, K. Kräling,
M. A. Celik, K. Harms, J. Maksimoska, R. Marmorstein,
G. Frenking, S. Knapp, L.-O. Essen and E. Meggers, J. Am. 10 Note that according to the Cahn–Ingold–Prelog priority
Chem. Soc., 2011, 133, 5976; (b) C. L. Davies, E. L. Dux and
A.-K. Duhme-Klair, Dalton Trans., 2009, 10141;
(c) C.-M. Che and F.-M. Siu, Curr. Opin. Chem. Biol., 2010,
14, 255; (d) N. L. Kilah and E. Meggers, Aust. J. Chem.,
2012, 65, 1325.
rules, the formal assignment of the absolute stereo-
chemistry at the oxazoline moiety depends on the presence
and location of the sulfur in the substituent at the 4-posi-
tion, leading to the following formal assignments of the
major stereoisomers of the formed ruthenium complexes:
Λ-S (3a), Δ-R (3b–g), and Δ-S (3h).
4 For reviews on asymmetric coordination chemistry, see:
(a) J.-L. Pierre, Coord. Chem. Rev., 1998, 178–180, 1183; 11 (a) A. M. McNair and K. R. Mann, Inorg. Chem., 1986, 25,
(b) U. Knof and A. von Zelewsky, Angew. Chem., Int. Ed.,
1999, 38, 302; (c) H. Brunner, Angew. Chem., Int. Ed., 1999,
2519; (b) R. S. Koefod and K. R. Mann, J. Am. Chem. Soc.,
1990, 112, 7287.
38, 1194; (d) P. D. Knight and P. Scott, Coord. Chem. Rev., 12 L.-A. Chen, J. Ma, M. A. Celik, H.-L. Yu, Z. Cao, G. Frenking,
2003, 242, 125; (e) C. Ganter, Chem. Soc. Rev., 2003, 32, 130; L. Gong and E. Meggers, Chem.–Asian J., 2012, 7, 2523.
(f) J. Lacour and V. Hebbe-Viton, Chem. Soc. Rev., 2003, 32, 13 C. F. Liu, N. C. Liu and J. C. Bailar, Inorg. Chem., 1964, 3, 1085.
373; (g) H. Amouri and M. Gruselle, Chirality in Transition 14 It is noteworthy that the auxiliary can be recovered after-
Metal Chemistry, Wiley, Chichester, 2008; (h) E. Meggers,
Eur. J. Inorg. Chem., 2011, 2911; (i) J. Crassous, Chem.
Commun., 2012, 48, 9684; ( j) E. C. Constable, Chem. Soc.
Rev., 2013, 42, 1427.
wards. For example, when reacting Δ-3b in MeCN (50 mM)
with bpy (15 eq.) and TFA (5 eq.) in a sealed vial at 110 °C
for 2 hours, the auxiliary 2b was isolated in a yield of 92%
and an e.r. >99%.
5626 | Dalton Trans., 2013, 42, 5623–5626
This journal is © The Royal Society of Chemistry 2013