4
Tetrahedron Letters
8. (a) Aminia, M. Haghdoostb, M. M.; Bagherzadeh, M.
Coordination Chem. Rev. 2014, 268, 83-100. (b) Bernini, R.;
Mincione, E.; Coratti, A.; Fabrizib, G.; Battistuzzib, G.
Tetrahedron 2004, 60, 967-971. (c) Jia, R.; Yub, K.; Loua, L.;
Liu S. Journal of Molecular Catalysis A: Chemical 2013, 378,
7-16. (d) Erdem, O.; Guzel, B. Inorganica Chimica Acta
2014, 418, 153-156.
Figure 4: Mechanism for the epoxidation step
9. (a) Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani K.;
Kaneda, K. J. Org. Chem., 2000, 65, 6897-6903. (b) Hanma,
T.; Nakajo, M.; Mizugaki, T.; Ebitani K.; Kaneda, K.;
Tetrahedron Lett. 2002, 43, 6229-6232. (c) Lakouraj, M. M.;
Movassagh, B.; Bahrami, K. Synth. Commun. 2001, 31, 1237-
1242.
10. Cativiela, C.; Figueras, F.; Fraile, J. M.; Garcia, J. I.;
Mayoral, J. A. Tetrahedron Lett. 1995, 36, 4125-4128.
11. Representative procedure: A 30 wt% aq. NaOH solution
(1 mL) was added to a mixture of substituted benzaldehyde (5
mmol), substituted acetophenone (5mmol) and methanol (10
mL), and stirred at room temperature for 1.5 h. The reaction
mixture was heated to dissolve the solid and a 30% hydrogen
peroxide solution (1 mL) was added. Then, the reaction was
stirred between 0-2 oC for 1.5 h. The final chalcone epoxides
were recovered by vacuum filtration.
In conclusion, we have developed a one-pot greener synthesis
for chalcone epoxides using consecutive reactions of Claisen
Schmidt condensation and epoxidation with low concentration
of hydrogen peroxide. The epoxides were synthesized from
substituted benzaldehydes and acetophenones and obtained in
good yields. The developed strategy allows chalcone epoxides
to be prepared without having to isolate and purify chalcone
intermediates. Selective ring opening of these chalcone
epoxides in ionic liquids are currently being investigated in
this laboratory.
Acknowledgement
The authors thank Susquehanna University Summer Partners
Program for the financial support of this research.
References and notes
12. All products exhibited spectral properties consistent with
1
the assigned structures. H, 13C and IR data are as follows.
1. (a) Tundo P.; Anastas, P. T. Green Chemistry: Challenging
Perspectives, Oxford University Press, Oxford, 1999. (b)
Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and
Practice, Oxford University Press, Oxford, 1998.
2. (a) Kang, E. Tetrahedron 2010, 66, 1029-1030. (b) Hofer,
R.; Bigorra, J. Green Chem. 2007, 9, 203-212. (c) Clark, J. H.;
Budarin, V.; Deswarte, F.; Hardy, J. J. E.; Kerton, F. M.;
Hunt, A. J.; Luque, R.; Macquarrie, D. J.; Milkowski, K.;
Rodriguez, A.; Samuel, O.; Tavener, S. J.; White, R. J.;
Wilson, A. Green Chem. 2006, 8, 853-860.
3. (a) Imada, Y.; Iida, H.; Naota, T. J. Am. Chem. Soc. 2005,
127, 14544-14545. (b) Kronenwetter, H.; Husek, J.; Jones, A.;
Etz, B.; Manchanayakage, R. Green Chem. 2014, 16, 1489-
1495. (c) Cave, G. W. V.; Raston, C. L.; Scott, J. L. Chem.
Commun. 2001, 2159-2169. (d) Slaton, R.; Petrone, A.;
Manchanayakage, R. Tetrahedron Lett. 2011, 52, 5073-5076.
(e) Yadav, J. S.; Reddy, B. V. S.; Baishya, G. J. Org.
Chem. 2003, 68, 7098-7100. (f) Olah, G. A.; Mathew, T.;
Goeppert, A.; Torok, B.; Bucsi, I.; Li, X.; Wang, Q.; Marinez,
E. R.; Batamack, P.; Aniszfeld, R.; Prakash, G. K. S. J. Am.
Chem. Soc. 2005, 127, 5964-5969.
1
Table 2, entry 1: H NMR (400 MHz, CDCl3) δ 8.01 (d, J =
8.0 Hz, 2H), 7.61 (t, J = 6.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H),
7.38 (m, 5H), 4.27 (d, J = 2 Hz, 1H), 4.08 (d, J = 2 Hz, 1H);
13C NMR (100 MHz, CDCl3) δ 192.5, 135.6, 134.1, 129.2,
129.0, 128.9, 128.5, 125.9, 61.1, 59.5; IR (ν/cm-1) 3074, 1687,
1450, 1280. Entry 2: 7.98 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.2
Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H),
7.29 (d, J = 8.0 Hz, 2H), 4.24 (d, J = 2 Hz, 1H), 4.05 (d, J = 2
Hz,
1H);
13C
NMR
(100
MHz,
CDCl3)
δ 192.8, 135.5, 135.0, 134.2, 134.1, 129.1, 129.0, 128.5, 127.2
1
, 61.0, 58.8; IR (ν/cm-1) 3008, 1680, 1350, 1200. Entry 3: H
NMR (400 MHz, CDCl3) δ 8.00 (d, J = 8.0 Hz, 2H), 7.61 (t, J
= 6.8 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz,
2H), 7.20 (d, J = 8.0 Hz, 2H), 4.29 (d, J = 2 Hz, 1H), 4.05 (d,
J = 2 Hz, 1H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ 193.3, 139.2, 135.6, 134.1, 132.6, 129.6, 128.9, 128.4,
125.9, 61.2, 59.6, 21.4; IR (ν/cm-1) 3050, 1655, 1400, 1350.
1
Entry 4: H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 7.6 Hz,
2H), 7.60 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.28 (d,
J = 8.4 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 4.29 (d, J = 2 Hz,
1H), 4.01 (d, J = 2 Hz, 1H), 3.83 (s, 3H); 13C NMR (100
MHz, CDCl3) δ 193.3, 160.4, 135.6, 134.0, 130.3, 128.9,
128.5, 127.3, 114.3, 61.2, 59.5, 55.5; IR (ν/cm-1) 3065, 1690,
1420, 1280. Entry 5: 1H NMR (400 MHz, CDCl3) δ 7.98 (d, J
= 7.6 Hz, 2H), 7.61 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.6 Hz,
2H), 7.36 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 4.24
(d, J = 2 Hz, 1H), 4.04 (d, J = 2 Hz, 1H); 13C NMR (100 MHz,
CDCl3) δ 192.2, 148.4, 142.9, 135.3, 134.4, 129.1, 128.5,
126.7, 124.2, 60.9, 58.1; IR (ν/cm-1) 3025, 1695, 1420, 695.
4. (a) Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev.
1996, 96, 195-206. (b) Domling, A. Chem. Rev. 2006, 106,
17-89.
5. (a) Jeon, H. J.; Choi, J. H.; Kang, J. K. Tetrahedron Lett.
2010, 51, 6243-6245. (b) Keyume, A.; Esmayil, Z.; Wang, L.;
Jun, F. Tetrahedron, 2014, 70, 3976-3980. (c) Suzuki, Y.;
Murofushi, M.; Manabe, K. Tetrahedron, 2013, 69, 470-473.
(d) Lu, B. Z.; Zhao, W.; Wei, H.; Dufour, M.; Farina, V.;
Senanayake, C. H. Organic Lett. 2006, 8, 3271-3274. (e)
Chung, W.; Lindovska, P.; Camp, J. E. Tetrahedron Lett.
2011, 52, 6785-6787. (f) Mattia, E.; Porta, A.; Merlini, V.;
Zanoni, G.; Vidari, G. Chemistry, 2012, 18, 11894-11898.
6. (a) Ho, T. L.; Liu, S. H. Synth. Commun. 1983, 13, 685-
690. (b) Huo, C.; Xu, X.; Jia, X.; Wang, X.; An, J.; Sun, C.
Tetrahedron 2012, 68, 190-196.
7. (a) Hasegawa, E.; Ishiyama, K.; Fujita, T.;Kato, T.; Abe, T.
J. Org. Chem. 1997, 62, 2396-2400. (b) Joy, B.; Ghosh, S.;
Padmaja, P.; Lalithambika, M. Catal. Commun. 2005, 6,
573-577. (c) Chang, C.; Kumar, M. P.; Liu, R. J. Org. Chem.
2004, 69, 2793-2796. (d) Suda, K.; Baba, K.; Nakajima, S.;
Takanami, T. Chem. Commun. 2002, 2570-2571.
1
Entry 6: H NMR (400 MHz, CDCl3) δ 8.09 (d, J = 7.3 Hz,
2H), 7.15-7.61 (m, 9H), 4.34 (d, J = 2 Hz, 1H), 4.11 (d, J = 2
Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 192.8, 134.9, 134.1,
133.9, 133.7, 129.8, 129.5, 128.9, 128.5, 126.2, 124.8, 60.1,
1
57.2; IR (ν/cm-1) 3020, 1688, 1600, 1350. Entry 7: H NMR
(400 MHz, CDCl3) δ 8.00 (d, J = 7.4 Hz, 2H), 7.74 (t, J = 7.2
Hz, 1H), 7.58 (t, J = 7.3 Hz, 2H), 7.25-7.15 (m, 4H), 4.21 (d, J
= 2 Hz, 1H), 4.02 (d, J = 2 Hz, 1H), 2.35 (s, 3H); 13C NMR
(100
MHz,
CDCl3)
δ 192.2, 139.5, 135.9, 135.7, 134.6, 129.9, 129.1, 128.9, 128.2
, 126.8, 123.5, 61.5, 59.2, 21.4; IR (ν/cm-1) 3021, 1675, 1580,