Page 5 of 7
Journal of the American Chemical Society
Lett. 1978, 19, 4625-4628. (c) O’Donnell, M. J.; Bennett, W. D.; Wu, S. The ste-
reoselective synthesis of .alpha.-amino acids by phase-transfer catalysis. J. Am.
Chem. Soc. 1989, 111, 2353-2355.
(19) Arene polarizability values taken from: Waite, J.; Papadopoulos, M. G.;
Nicolaides, C. A. Calculations of induced moments in large molecules. III. Polar-
izabilities and second hyperpolarizabilities of some aromatics. J. Chem. Phys.
1982, 77, 2536-2539.
(20) Lehnherr, D.; Ford, D. D.; Bendelsmith, A. J.; Kennedy, C. R.; Jacobsen,
E. N. Conformational Control of Chiral Amido-Thiourea Catalysts Enables Im-
proved Activity and Enantioselectivity. Org. Lett. 2016, 18, 3214-3217.
(21) Fully substituted -chloro amino esters such as α-chloro phenylglycine
and -chloro alanine proved not to be useful substrates in the allylation reactions,
with the former undergoing decomposition to unidentified products and the lat-
ter undergoing elimination to the dehydroalanine derivative.
1
2
3
4
5
6
7
(9) For a review see: (a) Maruoka, K.; Ooi, T. Enantioselective Amino Acid
Synthesis by Chiral Phase-Transfer Catalysis. Chem. Rev. 2003, 103, 3013-3028.
(b) Ooi, T.; Kameda, M.; Maruoka, K. Molecular Design of a C2-Symmetric Chi-
ral Phase-Transfer Catalyst for Practical Asymmetric Synthesis of α-Amino Acids.
J. Am. Chem. Soc. 1999, 121, 6519-6520. (c) Kitamura, M.; Shirakawa, S.; Maru-
oka, K. Powerful Chiral Phase‐Transfer Catalysts for the Asymmetric Synthesis
of α‐Alkyl‐and α,α‐Dialkyl‐α‐amino Acids. Angew. Chem. Int. Ed. 2005, 44, 1549-
1551.
8
9
(10) (a) Trost, B. M.; Azira, X. Catalytic Asymmetric Alkylation of Nucleo-
philes: Asymmetric Synthesis of α‐Alkylated Amino Acids. Angew. Chem. Int. Ed.
1997, 36, 2635-2637. (b) Trost, B. M.; Dogra, K. Synthesis of Novel Quaternary
Amino Acids Using Molybdenum-Catalyzed Asymmetric Allylic Alkylation. J.
Am. Chem. Soc. 2002, 124, 7256-7257. (c) Huo, X.; He, Rui.; Fu, J.; Zhang, J.;
Yang, G.; Zhang, W. Stereoselective and Site-Specific Allylic Alkylation of Amino
Acids and Small Peptides via a Pd/Cu Dual Catalysis. J. Am. Chem. Soc. 2017,
139, 9819-9822.
(11) (a) Kazmaier, U.; Krebs, A. Synthesis of Chiral γ,δ‐Unsaturated Amino
Acids by Asymmetric Ester Enolate Claisen Rearrangement. Angew. Chem. Int.
Ed. 1995, 34, 2012-2014. (b) Krebs, A.; Kazmaier, U. The asymmetric ester eno-
late Claisen rearrangement as a suitable method for the synthesis of sterically
highly demanding amino acids. Tetrahedron Lett. 1996, 37, 7945-7946. (c) Kaz-
maier, U. Application of the Chelate‐Enolate Claisen Rearrangement to The Syn-
thesis of γ,δ‐Unsaturated Amino Acids. Liebigs Annalen 1997, 1997, 285-295.
(12) (a) Soheili, A.; Tambar, U. K. Tandem Catalytic Allylic Amination and
[2,3]-Stevens Rearrangement of Tertiary Amines. J. Am. Chem. Soc. 2011, 133,
12956-12959. (b) West, T. H.; Daniels, D. S. B.; Slawin, A. M. Z.; Smith, A. D.
An Isothiourea-Catalyzed Asymmetric [2,3]-Rearrangement of Allylic Ammo-
nium Ylides. J. Am. Chem. Soc. 2014, 136, 4476-4479. (c) Spoehrle, S. S. M.;
West, T. H.; Taylor, J. E.; Slawin, A. M. Z.; Smith, A. D. Tandem Palladium and
Isothiourea Relay Catalysis: Enantioselective Synthesis of α-Amino Acid Deriva-
tives via Allylic Amination and [2,3]-Sigmatropic Rearrangement. J. Am. Chem.
Soc. 2017, 139, 11895-11902.
(13) (a) Fang, X.; Johannsen, M.; Yao, S.; Gathergood, N.; Hazell, R. G.;
Jørgensen, K. A. Catalytic Approach for the Formation of Optically Active Allyl
α-Amino Acids by Addition of Allylic Metal Compounds to α-Imino Esters. J.
Org. Chem. 1999, 64, 4844-4849. (b) Ferraris, D.; Young, B.; Cox, C.; Dudding,
T.; Drury, W. J.; Ryzhkov, L.; Taggi, A. E.; Lectka, T. Catalytic, Enantioselective
Alkylation of α-Imino Esters:ꢀ The Synthesis of Nonnatural α-Amino Acid Deriv-
atives. J. Am. Chem. Soc. 2002, 124, 67-77. (c) Ogawa, C.; Sugiura, M.; Koba-
yashi, S. Stereospecific, Enantioselective Allylation of α‐Hydrazono Esters by Us-
ing Allyltrichlorosilanes with BINAP Dioxides as Neutral‐Coordinate Organo-
catalysts. Angew. Chem. Int. Ed. 2004, 43, 6491-6493. (d) Jonker, S. J. T.; Diner,
C.; Schulz, G.; Iwamoto, H.; Eriksson, L.; Szabó, K. J. Catalytic asymmetric pro-
pargyl- and allylboration of hydrazonoesters: a metal-free approach to sterically
encumbered chiral α-amino acid derivatives. Chem. Commun. 2018, 54, 12852-
12855.
(14) (a) Roche, S. P.; Samanta, S. S. Autocatalytic one pot orchestration for
the synthesis of α-arylated, α-amino esters. Chem. Commun. 2014, 50, 2632-
2634. (b) Samanta, S. S.; Roche, S. P. In Situ-Generated Glycinyl Chloroaminals
for a One-Pot Synthesis of Non-proteinogenic α-Amino Esters. J. Org. Chem.
2017, 82, 8514-8526.
(15) Wasa, M.; Liu, R. Y.; Roche, S. P.; Jacobsen, E. N. Asymmetric Mannich
Synthesis of α-Amino Esters by Anion-Binding Catalysis. J. Am. Chem. Soc. 2014,
136, 12872-12875.
(16) Wuts, P. G. M.; Greene, T. W. Chapter 7: Protection for the Amino
Group Greene’s Protective Groups in Organic Synthesis, Ed. 4.;John Wiley and
Sons, Inc.: Hoboken, N.J. 2006; 696-926.
(17) Zhang, H.; Lin, S.; Jacobsen, E. N. Enantioselective Selenocyclization via
Dynamic Kinetic Resolution of Seleniranium Ions by Hydrogen-Bond Donor
Catalysts. J. Am. Chem. Soc. 2014, 136, 16485-16488.
(18) For a review see: (a) Kennedy, C. R.; Lin, S.; Jacobsen, E. N. The Cation–
π Interaction in Small‐Molecule Catalysis. Angew. Chem. Int. Ed. 2016, 55,
12596-12624. (b) Knowles, R. R.; Lin, S.; Jacobsen, E. N. Enantioselective Thio-
urea-Catalyzed Cationic Polycyclizations. J. Am. Chem. Soc. 2010, 132, 5030-
5032. (c) Lin, S.; Jacobsen, E. N. Thiourea-catalysed ring opening of episul-
fonium ions with indole derivatives by means of stabilizing non-covalent interac-
tions. Nat. Chem. 2012, 4, 817-824.
(22) Sigman, M. S.; Harper, K. C.; Bess, E. N.; Milo, A. The Development of
Multidimensional Analysis Tools for Asymmetric Catalysis and Beyond. Acc.
Chem. Res. 2016, 49, 1292-1301.
(23) Ammer, J.; Nolte, C.; Mayr, H. Free Energy Relationships for Reactions
of Substituted Benzhydrylium Ions: From Enthalpy over Entropy to Diffusion
Control. J. Am. Chem. Soc. 2012, 134, 13902-13911.
(24) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.;
Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. Reference Scales
for the Characterization of Cationic Electrophiles and Neutral Nucleophiles. J.
Am. Chem. Soc. 2001, 123, 9500-9512.
(25) (a) Sakaitani, M.; Kurokawa, N.; Ohfune, Y. N-carboxylate ion equiva-
lent. II. Novel transformations of N-benzyloxycarbonyl (Z) group and N-al-
lyloxycarbonyl group into N-t-butyldimethylsilyloxycarbonyl intermediate. Tet-
rahedron Lett. 1986, 27, 3753-3754. (b) Coleman, R. S. Chemoselective Cleav-
age of Benzyl Ethers, Esters, and Carbamates in the Presence of Other Easily Re-
ducible Groups. Synthesis 1999, S1, 1399-1400. (c) Wipf, P.; Uto, Y. Total Syn-
thesis and Revision of Stereochemistry of the Marine Metabolite Trunkamide A.
J. Org. Chem. 2000, 65, 1037-1049.
(26) (a) Raheem, I. T.; Thiara, P. V.; Peterson, E. A.; Jacobsen, E. N. Enanti-
oselective Pictet–Spengler-Type Cyclizations of Hydroxylactams: H-Bond Do-
nor Catalysis by Anion Binding. J. Am. Chem. Soc. 2007, 129, 13405–13406. (b)
Raheem, I. T.; Thiara, P. V.; Jacobsen, E. N. Regio- and Enantioselective Cycliza-
tion of Pyrroles onto N-Acyliminium Ions. Org. Lett. 2008, 10, 1577–1580. (c)
Peterson, E. A.; Jacobsen, E. N. Enantioselective, Thiourea-Catalyzed Intermo-
lecular Addition of Indoles to Cyclic N-Acyl Iminium Ions. Angew. Chem. Int.
Ed. 2009, 48, 6328–6331. (d) Park, Y.; Schindler, C. S.; Jacobsen, E. N. Enanti-
oselective Aza-Sakurai Cyclizations: Dual Role of Thiourea as H-bond Donor
and Lewis Base. J. Am. Chem. Soc. 2016, 138, 14848–14851.
(27) (a) Conant, J. B.; Kirner, W. R.; Hussey, R. E. The Relation Between the
Structure of Organic Halides and the Speeds of Their Reaction with Inorganic
Iodides. III. The Influence of Unsaturated Groups. J. Am. Chem. Soc. 1925, 47,
488-501. (b) Paddon-Row, M. N.; Santiago, C.; Houk, K. N. Possibility of .pi.-
electron donation by the electron-withdrawing substituents CN, CHO, CF3, and
+NH3. J. Am. Chem. Soc. 1980, 102, 6561-6563. (c) Kost, D.; Aviram, K. SN2
transition state. 4. Effect of .alpha.-substituents on SN2 reactivity and the SN2-
SN1 borderline problem. A molecular orbital approach. J. Am. Chem. Soc. 1986,
108, 2006-2013. (d) Bach, R. D.; Coddens, B. A.; Wolber, G. J. Origin of the re-
activity of allyl chloride and .alpha.-chloroacetaldehyde in SN2 nucleophilic sub-
stitution reactions: a theoretical comparison. J. Org. Chem. 1989, 51, 1030-1033.
(28) Rötheli, A. R. A Mechanistic Approach Towards Highly Efficient Anion-
Binding Catalysts. Ph. D. Thesis. Harvard University, 2016.
(29) Computations were carried using DFT at the B3LYP-D3BJ/6-
311+G(d,p) level of theory: (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self‐Con-
sistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for
Molecular‐Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724-
728. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent Molecular Or-
bital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in
Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257-
2261. (c) Hariharan, P. C.; Pople, J. A. The influence of polarization functions on
molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213-222.
(30) Given the observed solvent sensitivity and likely importance of attractive
non-covalent interactions, we used the polarization continuum model (PCM)
with a DCM dielectric and Grimme’s dispersion correction with Becke-Johnson
damping (D3BJ). (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent
and accurate ab initio parametrization of density functional dispersion correction
(DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 154104. (b)
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion
corrected density functional theory. J. Comp. Chem. 2010, 32 1456-1465. (c)
Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum
models of solvation. I. General formalism. J. Chem. Phys. 2010, 132, 114110.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACS Paragon Plus Environment