ORGANIC
LETTERS
2006
Vol. 8, No. 5
903-906
Progress toward the Total Synthesis of
Bielschowskysin: A Stereoselective
[2
+ 2] Photocycloaddition
Brandon Doroh and Gary A. Sulikowski*
Department of Chemistry, Vanderbilt UniVersity, NashVille, Tennessee 37235
gary.a.sulikowski@Vanderbilt.edu
Received December 13, 2005
ABSTRACT
The tetracyclic core of the diterpene bielschowskysin has been prepared as a single enantiomer via a stereoselective intramolecular [2
photocycloaddition of 5-alkylidene-2(5H)-furanone 3.
+ 2]
Gorgonian octacorals are the most plentiful source of
octacorals in the West Indies. With over 190 documented
species in this family, these marine organisms have proven
to be an excellent source of biologically active metabolites.1
Recently, there has been interest in the reef-dwelling sea
plume Pseudopterogorgia kallos as it has been shown to
produce a wide range of structurally interesting diterpenes
displaying a broad spectrum of bioactivities.2
Rodriguez and co-workers have reported the isolation of
Figure 1. Structure of bielschowskysin.
the novel diterpene bielschowskysin (Figure 1) from P. kallos
collected near Old Providence Island off the coast of
Columbia.3 Bielschowskysin is a highly oxygenated hexacy-
While the relative configuration has been established via
X-ray crystal analysis, the absolute configuration has yet to
be assigned.
clic diterpene that incorporates 11 stereocenters (seven
contiguous) and a novel [9.3.0.02,10] tetradecane ring system.
Bielschowskysin demonstrated strong in vitro cytotoxicity
against small cell lung cancer and renal cancer cells.3
Furthermore, it exhibits antiplasmodial activity against
Plasmodium falciparum with an IC50 ) 10 µg/mL. Owing
to its intriguing architecture and our interest in the design
of synthetic strategies for the purpose of investigating
biological properties of natural products, we are currently
exploring a route toward the synthesis of this diterpene and
(1) Review: Rodriquez, A. D. Tetrahedron 1995, 51, 4571-4618.
(2) (a) Look, S. A.; Burch, M. T.; Fenical, W. J. Org. Chem. 1985, 50,
5741-5746. (b) Marrero, J.; Rodriguez, A. D.; Baran, P.; Raptis, R. G. J.
Org. Chem. 2003, 68, 4977-4979. (c) Marrero, J.; Rodriguez, A. D.; Baran,
P.; Raptis, R. G. Org. Lett. 2003, 5, 2551-2554. (d) Marrero, J.; Rodriguez,
A. D.; Baran, P.; Raptis, R. G. Eur. J. Org. Chem. 2004, 3909-3912.
(3) Marrero, J.; Rodriguez, A. D.; Baran, P.; Raptis, R. G.; Sa´nchez, J.
A.; Ortega-Barria, E.; Capson, T. L. Org. Lett. 2004, 6, 1661-1664.
(4) (a) Brown, G. D.; Wong, H. F. Tetrahedron 2004, 60, 5439-5451.
(b) Gedge, D. R.; Pattenden, G.; Smith, A. G. J. Chem. Soc., Perkin Trans.
1 1986, 2127-2131.
(5) Saito, S.; Hasegawa, T.; Inaba, N.; Nishida, R.; Fujii, T.; Nomizu,
S.; Muriwake, T. Chem. Lett. 1984, 1389-1392.
(8) Duboudin, J. G.; Jousseaume, B.; Bonakdar, A. J. Organomet. Chem.
1979, 168, 227-238.
(9) (a) Kotora, M.; Negishi, E. Synthesis 1997, 121-128. (b) For a review
on the synthesis of γ-alkylidene butenolides, see: Negishi, E.; Kotora, M.
Tetrahedron 1997, 53, 6707.
(6) (a) Mori, Y.; Kuhara, M.; Takeuchi, A.; Suzuki, M. Tetrahedron Lett.
1988, 29, 5419-5433. (b) Mori, Y.; Suzuki, M. J. Chem. Soc., Perkin Trans.
1 1990, 1809-1812.
(7) Meyers, A. J.; Lawson, J. P.; Walker, D. G.; Linderman, P. J. J.
Org. Chem. 1986, 51, 5111-5123.
(10) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
10.1021/ol0530225 CCC: $33.50
© 2006 American Chemical Society
Published on Web 01/31/2006