Journal of the American Chemical Society
Communication
Chung, K.-G.; Ohe, K.; Uemura, S. J. Organomet. Chem. 2000, 603, 40.
(b) Koga, Y.; Sodeoka, M.; Shibasaki, M. Tetrahedron Lett. 1994, 35,
1227.
(6) For recent examples of intermolecular asymmetric Heck reactions
of acyclic electronically biased olefins, see: (a) Yoo, K. S.; O’Neil, J.;
Sakaguchi, S.; Giles, R.; Lee, J. H.; Jung, K. W. J. Org. Chem. 2010, 75,
95. (b) Yoo, K. S.; Park, C. P.; Yoon, C. H.; Sakaguchi, S.; O’Neil, J.;
Jung, K. W. Org. Lett. 2007, 9, 3933.
(7) For selected examples of using a redox relay strategy, see:
(a) Renata, H.; Zhou, Q.; Baran, P. S. Science 2013, 339, 59. (b) Burns,
N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009, 48,
2854. For examples of Pd relays, see: (c) Aspin, S.; Goutierre, A.-S.;
Larini, P.; Jazzar, R.; Baudoin, O. Angew. Chem., Int. Ed. 2012, 51,
10808. (d) Stokes, B. J.; Opra, S. M.; Sigman, M. S. J. Am. Chem. Soc.
2012, 134, 11408.
(8) For examples of isomerization/migration in Heck-type reactions,
see: (a) Kochi, T.; Hamasaki, T.; Aoyama, Y.; Kawasaki, J.; Kakiuchi,
F. J. Am. Chem. Soc. 2012, 134, 16544. (b) Crawley, M. L.; Phipps, K.
M.; Goljer, I.; Mehlmann, J. F.; Lundquist, J. T.; Ullrich, J. W.; Yang,
C.; Mahaney, P. E. Org. Lett. 2009, 11, 1183. (c) Berthiol, F.; Doucet,
H.; Santelli, M. Tetrahedron 2006, 62, 4372. (d) Wang, Y.; Dong, X.;
Larock, R. C. J. Org. Chem. 2003, 68, 3090. (e) Bouquillon, S.;
the ρ-value. An interesting feature of the minor insertion
pathway is that the redox-relay product is formed even though
this would formally require translation of the metal through the
initially fashioned C−C bond. As this product is also formed in
high enantioselectivity as the opposite enantiomer, the initial
migratory insertion likely proceeds with the opposite
orientation of the alkene as depicted in D→E. To form the
aldehyde product, β-hydride elimination should yield the
trisubstituted alkene in F followed by insertion of the resultant
Pd−H to deliver G. Subsequent repetitive events ultimately will
yield the aldehyde. The high level of enantioselection suggests
that the Pd−H does not dissociate from the alkene, which may
be attributed to the electrophilic nature of the catalyst. At this
stage, simple stereochemical models cannot account for the
excellent enantioselectivity observed as well as why the site
selection operates in concert with face selection. These issues
will require significant mechanistic investigations, which are
currently underway.
In conclusion, we report a highly enantioselective oxidative
Heck reaction of alkenyl alcohols that operates through a
redox-relay process. The products formed using this method
would be difficult to access rapidly using traditional approaches.
Preliminary efforts to understand the origin of site selectivity in
this process are reported, wherein Hammett and other
correlative techniques suggest that electronic effects play a
major role in controlling site selection. Understanding the rules
governing migratory insertion of relatively unbiased alkenes has
not been extensively defined. Research is underway to probe
this important organometallic mechanistic question, apply this
method to synthetic endeavors, and expand the concept of
redox-relay Heck reactions to new substrate and reaction types.
́
Ganchegui, B.; Estrine, B.; Henin, F.; Muzart, J. J. Organomet. Chem.
2001, 634, 153. (f) Larock, R. C.; Leung, W.-Y.; Stolz-Dunn, S.
Tetrahedron Lett. 1989, 30, 6629.
(9) Sigman, M. S.; Werner, E. W. Acc. Chem. Res. 2012, 45, 874.
(10) For examples of highly regioselective Heck reactions, see:
(a) Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. Angew. Chem., Int. Ed.
2012, 51, 5915. (b) Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc.
2011, 133, 9692. (c) Zhu, C.; Falck, J. R. Angew. Chem., Int. Ed. 2011,
50, 6626. (d) Delcamp, J. H.; Brucks, A. P.; White, M. C. J. Am. Chem.
Soc. 2008, 130, 11270. (e) Mo, J.; Xu, L.; Ruan, J.; Liu, S.; Xiao, J.
Chem. Commun. 2006, 3591.
(11) For selected examples of oxidative Heck reactions, see:
(a) Zheng, C.; Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2012, 134,
16496. (b) Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang,
J.; Jiang, Z.-X. J. Am. Chem. Soc. 2010, 132, 4506. (c) Yoo, K. S.; Yoon,
C. H.; Jung, K. W. J. Am. Chem. Soc. 2006, 128, 16384. (d) Andappan,
M. M. S.; Nilsson, P.; von Schenck, H.; Larhed, M. J. Org. Chem. 2004,
69, 5212. (e) Jung, Y. C.; Mishra, R. K.; Yoon, C. H.; Jung, K. W. Org.
Lett. 2003, 5, 2231. (f) Parrish, J. P.; Jung, Y. C.; Shin, S. I.; Jung, K. W.
J. Org. Chem. 2002, 67, 7127. (g) Du, X.; Suguro, M.; Hirabayashi, K.;
Mori, A.; Nishikata, T.; Hagiwara, N.; Kawata, T.; Okeda, T.; Wang, H.
F.; Fugami, K.; Kosugi, M. Org. Lett. 2001, 3, 3313.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and characterization data for new
substances. This material is available free of charge via the
■
S
AUTHOR INFORMATION
Corresponding Author
■
(12) Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132,
13981.
Notes
(13) For recent examples of using pyridine/quinoline oxazoline
ligands in Pd-catalyzed reactions, see: (a) Kikushima, K.; Holder, J. C.;
Gatti, M.; Stoltz, B. M. J. Am. Chem. Soc. 2011, 133, 6902.
(b) McDonald, R. I.; White, P. B.; Weinstein, A. B.; Tam, C. P.;
Stahl, S. S. Org. Lett. 2011, 13, 2830. (c) Jensen, K. H.; Pathak, T. P.;
Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2009, 131, 17074.
(d) Michel, B. W.; Camelio, A. M.; Cornell, C. N.; Sigman, M. S. J.
Am. Chem. Soc. 2009, 131, 6076.
(14) For the studies on roles of molecular sieves in Pd-catalyzed
aerobic oxidations, see: (a) Steinhoff, B. A.; King, A. E.; Stahl, S. S. J.
Org. Chem. 2006, 71, 1861. (b) Nishimura, T.; Maeda, Y.; Kakiuchi,
N.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 4301.
(15) For an example, see: Harper, K. C.; Vilardi, S. C.; Sigman, M. S.
J. Am. Chem. Soc. 2013, 135, 2482.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the National Institutes of Health
(NIGMS RO1 GM063540).
■
REFERENCES
■
(1) (a) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 15362.
(b) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2009, 131, 14231.
(2) For selected reviews, see: (a) Sun, Y.-W.; Zhu, P.-L.; Xu, Q.; Shi,
M. RSC Adv. 2013, 3, 3153. (b) Hawner, C.; Alexakis, A. Chem.
Commun. 2010, 46, 7295. (c) Harutyunyan, S. R.; den Hartog, T.;
Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.
(d) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829.
(3) Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Science
2012, 338, 1455.
(16) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
(17) (a) Verma, R.; Hansch, C. Chem. Rev. 2011, 111, 2865.
(b) Neuvonen, H.; Neuvonen, K.; Koch, A.; Kleinpeter, E.; Pasanen, P.
J. Org. Chem. 2002, 67, 6995. (c) Jones, R. G.; Partington, P. J. Chem.
Soc., Faraday Trans. 2 1972, 2087.
(4) For selected reviews, see: (a) Mc Cartney, D.; Guiry, P, J. Chem.
Soc. Rev. 2011, 40, 5122. (b) Shibasaki, M.; Vogl, E. M.; Ohshima, T.
Adv. Synth. Catal. 2004, 346, 1533. (c) Dounay, A. B.; Overman, L. E.
Chem. Rev. 2003, 103, 2945.
(5) For early examples of intermolecular asymmetric Heck reaction
with acyclic olefins, see: (a) Yonehara, K.; Mori, K.; Hashizume, T.;
D
dx.doi.org/10.1021/ja402916z | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX