D. Kumar, D. N. Kommi, P. Chopra, M. I. Ansari, A. K. Chakraborti
FULL PAPER
113.3, 91.7, 55.3, 44.9, 37.1 ppm. MS (APCI): m/z = 206.25 [M +
H]+. HRMS (ESI): calcd. for C12H15NO2Na [M + Na]+ 228.0995;
found 228.0998.
The lack of product formation in case of 4-hydroxy-
acetophenone and 4-aminoacetophenone (see Table 4, En-
tries 11 and 12) could be, because the competitive HB for-
mation of the hydroxy and amino group, respectively, with
the carboxylic hydrogen atom of l-proline interferes with
the HB-assisted activation of DMF-DMA. The retarding
effect exhibited by aryl methyl ketones with an alkoxy sub-
stituent on the aryl moiety (see Table 4, compare Entry 1
with 9 and 10, and Entry 27 with 28) may also be, because
of the competitive HB formation with the carboxylic acid
hydrogen atom in l-proline.
Supporting Information (see footnote on the first page of this arti-
cle): Spectral data for all compounds and scanned spectra.
Acknowledgments
D. K. and D. N. K. thank the Council of Scientific and Industrial
Research (CSIR), New Delhi for a Research Associateship and a
Senior Research Fellowship, respectively.
[1] D. Hamilton, “Synthetic Studies on Molecular Recognition”
in Bioorganic Chemistry Frontiers (Ed.: H. Dugas), Springer
Verlag, Berlin, 1991, vol. 2, pp. 117–174.
Conclusions
[2] L. J. Prins, D. N. Reinhoudt, P. Timmerman, Angew. Chem.
2001, 113, 2446; Angew. Chem. Int. Ed. 2001, 40, 2382–2426.
[3] P. I. Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248; Angew.
Chem. Int. Ed. 2004, 43, 5138–5175.
[4] a) N. A. Al-Awadi, M. H. Elnagdi, Y. A. Ibrahim, K. Kaul, A.
Kumar, Tetrahedron 2001, 57, 1609–1614; b) A.-Z. A. Elassar,
A. A. El-Khair, Tetrahedron 2003, 59, 8463–8480; c) J.-P. Wan,
Y.-J. Pan, Chem. Commun. 2009, 2768–2770; d) K. Longhi,
D. N. Moreira, M. R. B. Marzari, V. M. Floss, H. G. Bona-
corso, N. Zanatta, M. A. P. Martins, Tetrahedron Lett. 2010,
51, 3193–3196; e) S. Kantevari, D. Addla, B. Sridhar, Synthesis
2010, 3745–3754; f) G. H. Churchill, S. A. Raw, L. Powell, Tet-
rahedron Lett. 2011, 52, 3657–3661.
We have described the use of l-proline as an efficient
organocatalyst for the convenient syntheses of (2E)-3-(di-
methylamino)-2-propen-1-ones. The condensation of aryl,
heteroaryl, and styryl methyl ketones, cyclic ketones, and
1,3-diketones under solvent-free conditions afforded prod-
ucts in high yields and short reaction times. The organocat-
alytic role of l-proline has been envisaged in the synchro-
nous mode of covalent and noncovalent dual activation of
the methyl ketones or active methylene compounds with
DMF-DMA. The reaction represents an organocatalytic
cascade sequence through a cooperatively formed HB-as-
sisted ambiphilic (nucleophilic and electrophilic) activation
of methyl ketones or active methylene compounds with
DMF-DMA.
[5] A. K. Chakraborti, S. Sarin, S. V. Rudrawar, R. Kumar, S. V.
Chankeshwara, S. Dastidar, A. Ray, Indian PCT Patent Appl.
566/DEL/2006, 2006; A. K. Chakraborti, S. Sarin, S. V. Rudra-
war, R. Kumar, S. V. Chankeshwara, S. Dastidar, A. Ray, In-
dian PCT Patent Appl. 565/DEL/2006, 2006.
[6] Y. F. Liu, C. L. Wang, Y. J. Bai, N. Han, J. P. Jiao, X. L. Qi,
Org. Process Res. Dev. 2008, 12, 490–495.
Experimental Section
[7] a) R. F. Abdulla, K. H. Fuhr, J. Org. Chem. 1978, 43, 4248–
4250; b) P. F. Schuda, C. B. Ebner, T. M. Morgan, Tetrahedron
Lett. 1986, 27, 2567–2570; c) Y.-I. Lin, S. A. Lang, J. Org.
Chem. 1980, 45, 4857–4860; d) R. SanMartín, E. M. D. Mari-
gorta, E. Domínguez, Tetrahedron 1994, 50, 2255–2264; e)
K. M. Dawood, Z. E. Kandeel, A. M. Farag, Heteroat. Chem.
1999, 10, 417–422; f) F. A. Omran, A. Z. A. Elassar, A. A. El-
Khair, Tetrahedron 2001, 57, 10163–10170; g) A.-K. Pleier, H.
Glas, M. Grosche, P. Sirsch, W. R. Thiel, Synthesis 2001, 55–
General Methods: The 1H (400 MHz) and 13C NMR (100 MHz)
spectroscopic data were recorded with a Bruker Avance DPX 300
NMR spectrometer, using CDCl3 as the solvent and TMS as an
internal standard. J values are given in Hz. The IR spectra were
recorded with a Nicolet Impact 410 FTIR spectrometer, and the
samples were either KBr pellets (for solids) or neat (for liquids).
Mass spectra were recorded with a GC–MS QP 5000 (Shimadzu,
for EI) and Finnigan MAT-LCQ [for APCI (atmospheric pressure
chemical ionization)] mass spectrometers. The reactions were moni-
tored by using TLC (Merck®, Silica gel 60 F254). Evaporation of
solvents was performed at reduced pressure, using a rotary evapora-
tor.
ˇ
62; h) K. M. Al-Zaydi, Molecules 2003, 8, 541–555; i) Z. Casar,
D. Bevk, J. Svete, B. Stanovnik, Tetrahedron 2005, 61, 7508–
7519; j) B. Stanovnik, J. Svete, Mini.-Rev. Org. Chem. 2005, 2,
211–224; k) J. Wagger, D. Bevk, A. Meden, J. Svete, B. Stanov-
nik, Helv. Chim. Acta 2006, 89, 240–248; l) H. J. Brabander, G.
Francisco, J. Heterocycl. Chem. 1987, 24, 837–843; m) V. Kepe,
M. Kocˇevar, S. Polanc, J. Heterocycl. Chem. 1996, 33, 1707–
Typical Experimental Procedure for the Synthesis of 3-(Dimeth-
ylamino)-1-(4-methoxyphenyl)prop-2-en-1-one: Table 4, Entry 9. To
a magnetically stirred mixture of 4-methoxyacetophenone (1i,
0.37 g, 2.5 mmol) and DMF-DMA (0.39 mL, 357 mg, 3 mmol,
1.2 equiv.) at 80 °C (oil bath) was added l-proline (29 mg,
0.25 mmol, 10 mol-%), and the mixture was stirred for 2 h. The
mixture was concentrated in vacuo to remove the volatile compo-
nents (excess amount of DMF-DMA and the liberated methanol),
and the crude product was purified by flash chromatography
(EtOAc/hexane) to afford 3-(dimethylamino)-1-(4-methoxyphenyl)-
prop-2-en-1-one (2i) as reddish brown viscous solid[8] (0.41 g, 80%).
ˇ
1710; n) P. Cebasˇek, J. Wagger, D. Bevk, R. Jaksˇe, J. Svete, B.
Stanovnik, J. Comb. Chem. 2004, 6, 356–362.
[8] S. Bindal, D. Kumar, D. N. Kommi, S. Bhatya, A. K. Chakra-
borti, Synthesis 2011, 1930–1935.
[9] M. A. P. Martins, C. P. Frizzo, D. N. Moreira, F. A. Rosa,
M. R. B. Marzari, N. Zanatta, H. G. Bonacorso, Catal. Com-
mun. 2008, 9, 1375–1378.
[10] a) A. Sarkar, S. Raha Roy, N. Parikh, A. K. Chakraborti, J.
Org. Chem. 2011, 76, 7132–7140; b) S. Raha Roy, P. S. Jad-
havar, K. Seth, A. K. Chakraborti, Synthesis 2011, 2261–2267.
[11] A. Sarkar, S. Raha Roy, D. Kumar, C. Madaan, S. Rudrawar,
A. K. Chakraborti, Org. Biomol. Chem. 2012, 10, 281–286.
[12] H. O. House, Modern Synthetic Reactions, W. A. Benjamin,
Inc., Philippines, 1972, chapter 9, pp. 570.
IR (KBr): ν
= 2930, 1635, 1605, 1432, 1350, 1252, 1210, 1105,
˜
max
1032, 892, 835 cm–1. H NMR (400 MHz, CDCl3): δ = 7.89–7.91
(m, 2 H), 7.79 (d, J = 12.3 Hz, 1 H), 6.89–6.92 (m, 2 H), 5.71 (d,
J = 12.3 Hz, 1 H), 3.84 (s, 3 H), 3.10 (s, 3 H), 2.93 (s, 3 H) ppm.
13C NMR (100 MHz, CDCl3): δ = 187.5, 161.9, 153.8, 133.1, 129.5,
1
[13] a) M. B. Schmidt, K. Zeitler, R. M. Gschwind, Angew. Chem.
Int. Ed. 2010, 49, 4997–5003; b) C. Marquez, J. O. Metzer,
Chem. Commun. 2006, 1539–1541; c) B. List, L. Hoang, H. J.
6412
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 6407–6413