Communication
Organic & Biomolecular Chemistry
Acknowledgements
The authors gratefully acknowledge the National Basic
Research Program of China (973 program, 2011CB808600) and
the Chinese Academy of Sciences for the financial support.
Fig. 6 The X-ray structure of compound 4c.
Notes and references
1 C. Boonlarppradab, C. A. Kauffman, P. R. Jensen and
W. Fenical, Org. Lett., 2008, 10, 5505.
2 (a) A. Fürstner, Angew. Chem., Int. Ed., 2003, 42, 3582;
(b) N. R. Williamson, P. C. Fineran, T. Gristwood,
S. R. Chawrai, F. J. Leeper and G. P. C. Salmond, Future
Microbiol., 2007, 2, 605.
3 L. N. Aldrich, E. S. Dawson and C. W. Lindsley, Org. Lett.,
2010, 12, 1048.
4 X.-C. Cai, X. Wu and B. B. Snider, Org. Lett., 2010, 12, 1600.
5 For leading reviews on N-acyliminium chemistry, see:
(a) W. N. Speckamp and M. J. Moolenaar, Tetrahedron,
2000, 56, 3817; (b) B. E. Maryanoff, H.-C. Zhang,
J. H. Cohen, I. J. Turchi and C. A. Maryanoff, Chem. Rev.,
2004, 104, 1431; (c) J. Royer, M. Bonin and L. Micouin,
Chem. Rev., 2004, 104, 2311.
6 L. A. Paquette, J. C. Lanter and H.-L. Wang, J. Org. Chem.,
1996, 61, 1119.
7 (a) T. M. Visp, US4983743, 1991; (b) M. Bänziger,
J. F. McGarrity and T. Meul, J. Org. Chem., 1993, 58, 4010.
8 H. Rapoport and N. Castagnoli, J. Am. Chem. Soc., 1962, 84,
2178.
9 For a leading review on the Tf2O-promoted Vilsmeier–
Haack
type
reaction,
see:
I.
L.
Baraznenok,
V. G. Nenajdenko and E. S. Balenkova, Tetrahedron, 2000,
56, 3077.
Fig. 7 Stereoisomers of spiroiminal.
10 For leading references on the Tf2O-promoted Vilsmeier–
Haack type reaction, see: (a) A. G. Martínez, R. M. Alvarez,
J. O. Barcina, S. M. Cerero, E. T. Vilar, A. G. Fraile,
M. Hanack and L. R. Subramanian, J. Chem. Soc., Chem.
Commun., 1990, 1571; (b) D. S. C. Black, A. J. Ivory and
N. Kumar, Tetrahedron, 1996, 52, 4697; (c) D. S. C. Black,
A. J. Ivory and N. Kumar, Tetrahedron, 1996, 52, 7003;
(d) V. G. Nenajdenko, I. L. Baraznenok and E. S. Balenkova,
Tetrahedron, 1996, 52, 12993; (e) V. G. Nenajdenko,
I. L. Baraznenok and E. S. Balenkova, Tetrahedron Lett.,
1996, 37, 4199; (f) I. L. Baraznenok, V. G. Nenajdenko and
E. S. Balenkova, Synthesis, 1997, 465; (g) V. G. Nenajdenko,
I. L. Baraznenok and E. S. Balenkova, J. Org. Chem., 1998,
63, 6132; (h) D. S. C. Black and R. Rezaie, Tetrahedron Lett.,
1999, 40, 4251; (i) L. Shao, P. D. Badger, S. J. Geib and
N. J. Cooper, Organometallics, 2004, 23, 5939;
( j) M. Ghandi, S. Salahi and M. Hasani, Tetrahedron Lett.,
2011, 52, 270.
factors for the stability of these isomers. In the case of marin-
eosin A (1) or B (2), the fused macrocyclic ring in the natural
product will likely make the MeO group stay away from it to
ensure a more stable configuration. The stereochemistry of the
MeO group will likely determine the configuration of the spiro-
iminal during the cyclization. Compounds 3a, 3b, and 3c
were previously reported by Snider and co-workers.4 Similar
discussion on the relative stability of these compounds has
also been described by them.
Conclusion
In summary, we have developed a concise strategy to construct
the spiroiminal fragment of marineosins A and B in five steps.
The key steps involve an acid-catalyzed N-acyliminium ion
cyclization and a Tf2O mediated Vilsmeier–Haack type reaction 11 A similar ratio was obtained when 4c was treated with
to introduce the pyrrole. The application of this strategy to the p-TsOH·H2O (0.1 equiv.) in CDCl3.
synthesis of marineosins A, B and their derivatives is currently 12 For leading review on the anomeric effect, see:
R. U. Lemieux, Pure Appl. Chem., 1971, 25, 527.
a
underway.
2938 | Org. Biomol. Chem., 2013, 11, 2936–2938
This journal is © The Royal Society of Chemistry 2013