S. Y. Jadhav et al. / Bioorg. Med. Chem. Lett. 23 (2013) 2575–2578
2577
9. Ozdemir, Z.; Kandilici, H. B.; Gumusel, B.; Calis, U.; Bilgin, A. Eur. J. Med. Chem.
2007, 42, 373.
10. Shaharyar, M.; Siddique, A. A.; Ali, M. A.; Sriram, D.; Perumal, Y. Bioorg. Med.
Chem. Lett. 2006, 16, 3947.
11. Rathish, I. G.; Javed, K.; Ahmed, S.; Bano, S.; Alam, M. S.; Pillai, K. K.; Singh, S.;
Bagchi, V. Bioorg. Med. Chem. Lett. 2009, 19, 255.
in PEG-400 and heated for about 4–5 h to afford pyrazoline deriv-
atives 5a–g and 6a–g respectively. The completion of the reaction
was monitored by TLC. All the synthesized compounds were char-
acterized by IR, 1H NMR and Mass spectroscopy.33,34
IR spectra of compounds 5f and 5g reveals that, the (C@O)
absorption bands were observed in the region 1654–1660 cmÀ1
and the (C@N) stretching was observed at 1595 cmÀ1 whereas in
the IR spectra of compounds 6f and 6g, the (C@O) absorption bands
were not observed in the region 1654–1660 cmÀ1 and the (C@N)
stretching was found in the same region. These stretching vibration
values confirm the formation of desired pyrazoline derivatives. In
the 1H NMR spectra of compounds 5f, 5g and 6f, 6g, the chiral
CH proton appeared at d 5.8–5.9 and 5.53–5.57, respectively as
doublet of doublet, while the pro-chiral methylene protons ap-
peared at d 3.07–3.77 and d 3.23–3.98 respectively as two distinct
doublet of a doublet there by indicating the magnetic non-
equivalency of the two protons. These newly synthesized
compounds are also confirmed by mass spectral analysis.
12. Dawane, B. S.; Konda, S. G.; Mandwad, G. G.; Shaikh, B. M. Eur. J. Med. Chem.
2010, 45, 387.
13. Gulhan, T. H.; Pierre, C.; Fatma, S. K.; E. Kevser, E. Eur. J. Med. Chem. 2000, 35,
635.
14. Fioravanti, R.; Bolasco, A.; Manna, F.; Rossi, F.; Orallo, F.; Ortuso, F.; Alcaro, S.;
Cirilli, R. Eur. J. Med. Chem. 2010, 45, 6135.
15. Joshi, R. S.; Mandhane, P. G.; Diwakar, S. D.; Dabhade, S. K.; Gill, C. H. Bioorg.
Med. Chem. Lett. 2010, 20, 3721.
16. (a) Amir, M.; Kumar, H.; Khan, S. A. Bioorg. Med. Chem. Lett. 2008, 18, 918; (b)
Desai, N. C.; Joshi, V. V.; Rajpara, K. M.; Vaghani, H. V.; Satodiya, H. M. J. Fluorine
Chem. 2012, 142, 67.
17. Manfredini, S.; Bazzanini, R.; Baraldi, P. G.; Guarneri, M.; Simoni, D.; Marongiu,
M. E.; Pani, A.; Colla, P. L.; Tramontano, E. J. Med. Chem. 1992, 35, 917.
18. Noell, C. W.; Cheng, C. C. J. Med. Chem. 1971, 14, 1245.
19. Abdel-Aziz, M.; Abuo-Rahma, G. A.; Hassan, A. A. Eur. J. Med. Chem. 2009, 44,
3480.
20. Bonesi, M.; Loizzo, M. R.; Statti, G. A.; Michel, S.; Tillequin, F.; Menichini, F.
Bioorg. Med. Chem. Lett. 1990, 2010, 20.
All these newly synthesized pyrazoline derivatives were evalu-
ated for their antiinflammatory activity30 at 50 mg/kg p.o. against
carrageenan induced paw edema method in wistar rats,31 and
compared with the standard drug Diclofenac sodium. The effects
of synthesized compounds and standard drug on paw edema in-
duced by carrageenan are shown in Table 1. The antiinflammatory
result reveals that compounds 5g and 6g showed excellent activity
whereas the compounds 5b, 5c, 5f, 6b, 6c and 6f showed
significant activity after comparing with Diclofenac. The remaining
pyrazoline derivatives showed weak antiinflammatory activity.
All these compounds were also evaluated for their analgesic
activity at 25 mg/kg p.o. by radiant heat tail flick method in rats.32
The results are summarized in Table 1 and are expressed as per-
centage analgesia. All compounds showed analgesic activity in
the range of 35–110% and were compared with the standard drug
Aspirin. The analgesic result revealed that the compounds 5c, 5d,
5e, 5f, 6c, 6d, 6e, and 6f showed significant activity as compared
with standard drug Aspirin, while as remaining compounds
showed moderate analgesic activity after 1 h treatment.
21. Coutinho, E. C.; Khunt, R. C.; Khedkar, V. M.; Chawda, R. S.; Chauhan, N. A.;
Parikh, A. R. Bioorg. Med. Chem. Lett. 2012, 22, 666.
22. Shelke, S.; Mhaske, G.; Gadakh, S.; Gill, C. Bioorg. Med. Chem. Lett. 2010, 20,
7200.
23. Suryakiran, N.; Ramesh, D.; Vemkateswarulu, Y. Green Chem. Lett. 2007, 1, 73.
24. Kamal, A.; Reddy, D. R.; Rajender, S. Tetrahedron Lett. 2005, 46, 7951.
25. Das, B.; Krishnaiah, M.; Balsubramanyam, P. Tetrahedron Lett. 2008, 49, 2225.
26. Olga, Biondi; Salvatore, Motta; Pasquale, Mosesso Mutagenesis 2002, 17, 261.
27. Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem. 2005, 7, 64.
28. (a) Li, J. H.; Liu, W. J.; Xie, Y. X. J. Org. Chem. 2005, 70, 5409; (b) Jain, S. L.;
Singhal, S.; Sain, B. Green Chem. 2007, 9, 740; (c) Han, W.; Liu, C.; Jin, Z.-L. Org.
Lett. 2007, 9, 4005.
29. Kira, M. A.; Abdel-Raeman, M. O.; Gadall, K. Z. Tetrahedron Lett. 1969, 2, 109.
30. Pharmacology: Wistar rat of either sex weighing 150–220 g were obtained from
Animal house, Luqman College of Pharmacy, Gulberga, Karnataka, India. All the
animals were housed under standard ambient conditions of temperature
(25 2 °C) and relative humidity of 50 5%. A 12/12 h light/dark cycle was
maintained. All the animals were allowed to have free access to water and
standard palletized laboratory animal diet 24 h before pharmacological
studies. All experiments were carried out using six animals per group. The
experimental procedures and protocols used in this study were reviewed and
approved by the Institutional Animal Ethical Committee (IAEC) of Luqman
College of Pharmacy, Gulberga, constituted in accordance with the guidelines
of the Committee for the Purpose of Control and Supervision of Experiments on
Animals (CPCSEA/346), Government of India.
The new series of fluoro substituted pyrazoline derivatives were
synthesized using PEG-400 as an alternative reaction medium and
identified as anti inflammatory and analgesic agents. The reaction
was clean and the products were obtained in excellent yields
without formation of any detectable side products. Among the 14
compounds screened, the four compounds 5c, 5f, 6c and 6f showed
significant activities in both screens when compared to standard
drugs Diclofenac and Aspirin. Hence, it can be concluded that,
the tested pyrazolines derivatives can considered as potential anti-
inflammatory and analgesic agents. Further studies in relation to
cytotoxicity and ADME are warranted for the better understanding.
31. Muniappan, M.; Sundararaj, T. J. Ethnopharmacol. 2003, 88, 161.
32. Meena Kumari, K.; Amberkar, M. V.; Shanbhag, T.; Bairy, K. L.; Shenoy, S. Indian
J. Physiol. Pharmacol. 2011, 55, 13.
33. Synthesis of pyrazoline derivatives (5a–g): A mixture of pyrazole chalcones 4a–g
(1.0 mM) were placed in a 100 mL round bottom flask with 10 mL of PEG-400.
To this solution hydrazine hydrate (99%) (2.0 mM) and 1 mL glacial acetic acid
were added drop wise and heated at 70–75 °C for about 4–5 h. Reaction
progress was monitored by TLC. After completion of the reaction, reaction
mixture was cooled, poured into crushed ice, precipitate formed was filtered
off and recrystallized from ethanol, affording compounds 5a–g. Compound 5a:
yield: 80%; mp: 232–233 °C; IR (KBr) cmÀ1: 3059, 1656, 1600, 1505, 1414,
1229; 1H NMR (300 MHz, CDCl3):
d 2.43 (s, 3H, N-acetyl), 3.06 (dd, 1H,
pyrazoline H), 3.57–3.69 (dd, 1H, pyrazoline H), 5.81–5.86 (dd, 1H, pyrazoline
H), 7.07–7.76 (m, 13H, ArH), 7.78 (s, 1H, pyrazole-H). Compound 5b: yield:
84%; mp: 228–230 °C; IR (KBr) cmÀ1: 3059, 1656, 1600, 1505, 1414, 1229; 1H
NMR (500 MHz, CDCl3): d 2.46 (s, 3H, N-acetyl), 3.05–3.10 (dd, 1H, pyrazoline
H), 3.61–3.65 (dd, 1H, pyrazoline H), 5.85–5.88 (dd, 1H, pyrazoline H), 7.10–
7.73 (m, 13H, ArH), 7.80 (s, 1H, pyrazole-H); MS: m/z = 459 (M+1). Compound
5c: yield: 78%; mp: 213–214 °C; IR (KBr) cmÀ1: 3062, 1657, 1599, 1505, 1415,
1229; 1H NMR (300 MHz, CDCl3): d 2.44 (s, 3H, N-acetyl), 3.01–3.08 (dd, 1H,
pyrazoline H), 3.61–3.65 (dd, 1H, pyrazoline H), 5.82–5.87(dd, 1H, pyrazoline
H), 7.07–7.68 (m, 13H, ArH), 7.78 (s, 1H, pyrazole-H); MS: m/z = 505 (M+2).
Compound 5d: yield: 85%; mp: 198 °C; IR (KBr) cmÀ1: 3192, 2915, 2839,
1648,1595,1501, 1407, 1222; 1H NMR (300 MHz, CDCl3): d 2.36 (s, 3H, –CH3)
2.44 (s, 3H, N-acetyl), 3.02–3.09 (dd, 1H, pyrazoline H), 3.54–3.64 (dd, 1H,
pyrazoline H), 5.87–5.92 (dd, 1H, pyrazoline H), 7.04–7.69 (m, 13H, ArH), 7.76
(s, 1H, H-5 of pyrazole); MS: m/z = 439 (M+1). Compound 5e: yield: 83%; mp:
162–164 °C; IR (KBr) cmÀ1: 2995, 2892,1660, 1601, 1507,1359, 1239, 1154,
1052; 1H NMR (500 MHz, CDCl3): d 2.46 (s, 3H, N-acetyl), 3.83 (s, 3H, –OCH3),
3.06–3.1(dd, 1H, pyrazoline H), 3.58–3.63 (dd, 1H, pyrazoline H), 5.87–5.91
(dd, 1H, pyrazoline H), 6.95–7.71 (m, 13H, ArH), 7.79 (s, 1H, pyrazole-H); MS:
Acknowledgment
The author S.Y.J. is thankful to the University Grants Commis-
sion (WRO), Pune for the award Teacher Fellowship under XI plan.
References and notes
1. Kuznetsova, L.; Ungureanu, M. I.; Pepe, A. J. Fluorine Chem. 2004, 125, 415.
2. Haga, T.; Fujikawa, K.; Koyanag, T.; Nakajima, T.; Hayashi, K. Heterocycles 1984,
22, 117.
3. Patel, M. V.; Bell, R.; Majest, S.; Henry, R.; Kolasa, T. J. Org. Chem. 2004, 69, 7058.
4. Damlijanovic, I.; Vukicevic, M.; Radulovic, N.; Palic, R.; Ellmerer, E.; Ratkovic, Z.;
Joksovic, M. D.; Vukicevic, R. D. Bioorg. Med. Chem. Lett. 2009, 1093, 19.
5. Sharma, P. K.; Kumar, S.; Kumar, P.; Kaushik, P.; Kaushik, D.; Dhingra, Y.; Aneja,
K. R. Eur. J. Med. Chem. 2010, 45, 2650.
6. Sherif, A. F.; Rostom, M. A.; Shalaby, M. A.; El-Demellawy Eur. J. Med. Chem.
2003, 38, 959.
7. Mosafa, M. G.; Fatma, A. R.; Saleh, I. A.; Ahmed, M. A.; Sarah, A. A. Eur. J. Med.
Chem. 2010, 45, 171.
m/z = 455 (M+1). Compound 5f: yield: 74%; mp: 247–248 °C; IR (KBr) cmÀ1
:
2995, 2892, 1660, 1595, 1507, 1359, 1239, 1154, 1052; 1H NMR (300 MHz,
CDCl3): d 2.44 (s, 3H, N-acetyl), 3.07–3.14 (dd, 1H, pyrazoline H), 3.68–3.77 (dd,
1H, pyrazoline H), 5.83–5.88 (dd, 1H, pyrazoline H), 7.07–8.60 (m, 13H, ArH),
7.79 (s, 1H, pyrazole-H). Compound 5g: yield: 85%; mp:174–175 °C; IR (KBr)
cmÀ1: 3010, 1654, 1595, 1503, 1240; 1H NMR (300 MHz, CDCl3): d 2.44 (s, 3H,
8. Nikhila, D.; Amnekar, K. P.; Bhusari Eur. J. Med. Chem. 2010, 45, 149.