Regioregular Oligothiophene Photovoltaic Dye Molecules
FULL PAPER
2H, J=7.8 Hz), 2.75 (t, 2H, J=7.9 Hz), 4.38 (q, 2H, J=7.2 Hz), 6.82 (s,
1H), 7.17 (s, 1H), 7.27–7.25 (m, 1H), 7.40 (d, 1H, J=8.7 Hz), 7.42 (d,
1H, J=8.6 Hz), 7.49 (ddd, 1H, J=8.1, 7.0, 0.9 Hz), 7.70 (dd, 1H, J=8.4,
1.5 Hz), 8.14 (d, 1H, J=7.6 Hz), 8.29 ppm (d, 1H, J=1.5 Hz); 13C NMR
(100 MHz, CDCl3): d=13.9, 14.3, 22.7, 22.8, 29.1, 29.4, 29.7, 30.1, 30.8,
31.8, 31.9, 32.5, 37.7, 73.5, 108.7, 108.8, 117.6, 119.2, 120.7, 123.0, 123.5,
124.0, 124.9, 125.3, 126.0, 126.1, 128.5, 139.7, 140.5, 141.0, 141.4, 143.8,
147.6 ppm.
2-Cyano-3-[5’’’-(9-ethyl-9H-carbazol-3-yl)-3’,3’’,3’’’,4-tetrahexyl(2,2’:5’,2’’:
5’’,2’’’-quaterthiophene]-5-yl]-2-propenoic acid (MK-2):[4] Dark-red solid;
1H NMR (400 MHz, [D8]THF): d=0.90–0.94 (m, 12H), 1.41 (t, 3H, J=
7.2 Hz), 1.28–1.51 (m, 24H), 1.63–1.81 (m, 8H), 2.82–2.93 (m, 8H), 4.43
(q, 2H, J=7.2 Hz), 7.09 (s, 1H), 7.13 (s, 1H, s), 7.17 (t, 1H, J=7.2 Hz),
7.24 (s, 1H), 7.32 (s, 1H), 7.43 (ddd, 1H, J=8.0, 7.2, 0.8 Hz), 7.48–7.52
(m, 2H), 7.73 (d, 1H, J=8.5 Hz), 8.15 (d, 1H, J=7.7 Hz), 8.40 (s, 1H),
8.41 ppm (s, 1H); 13C NMR (100 MHz, [D8]THF): d=14.1, 14.4, 14.5
(ꢃ3), 23.5 (ꢃ2), 23.6 (ꢃ2), 29.1, 29.5, 29.9, 30.1, 30.2 (ꢃ2), 30.3, 30.4, 30.6,
30.8, 31.3, 31.4, 31.5, 32.2, 32.5, 32.7 (ꢃ2), 38.2, 98.1, 109.6, 109.8, 117.0,
117.9, 119.8, 121.2, 123.9, 124.4 (ꢃ2), 125.9, 126.0, 126.8, 128.2, 129.0,
129.1, 130.0, 130.1, 130.3, 130.7, 136.3, 137.1, 140.6, 141.5 (ꢃ2), 141.6,
143.4, 143.8, 144.6, 144.7, 155.3, 164.6 ppm.
Step 5: Stille-type cross-coupling of the two bithiophene units 3 and 1’’,
leading to the tetrameric core of MK-2 (Scheme 6): A mixture of 5-tribu-
tylstannyl-3,4’-dihexyl-2,2’-bithiophene 1’’ (372 mg, 0.60 mmol), 9-ethyl-3-
[3,4’-dihexyl-5’-iodo(2,2’-bithiophene)-5-yl]carbazole
0.40 mmol), and tetrakis(triphenylphosphine)palladium
3
(260 mg,
(18.6 mg,
The overall yield of the MK-2 synthesis is over 59% when starting from
commercially available 3-hexylthiophene.
0.016 mmol) in degassed toluene (4 mL) was heated at reflux for 12 h.
After cooling, a solution of tetrabutylammonium chloride in THF (1m,
0.4 mL) was added and the solvents were evaporated under reduced pres-
sure. The crude coupling product was purified by column chromatogra-
phy on silica gel (hexanes/ethyl acetate 50:1) to give the quaterthiophene
4 (339 mg, 0.399 mmol) in 99% yield.
Efficient Suzuki coupling of the bithophene halide 1’ with an extended
series of organoboron compounds (Table 1): The Suzuki-coupling was ex-
amined by using the bithiophene halide 1’ (0.25 mmol) with 1.1 equiva-
lents of organoboron compounds (0.275 mmol) in the same procedure to
that described in the Experimental Section, step 3. The pure products (2’:
138 mg, 0.24 mmol, 96%; 2’’: 108 mg, 0.23 mmol, 93%; 2’’’: 145 mg,
0.25 mmol, >99%; 2’’’’: 124 mg, 0.25 mmol, >99%) were obtained by
column chromatography on silica gel (2’: hexanes/ethyl acetate 50:1; 2’’:
hexanes/ethyl acetate 50:1; 2’’’: hexanes/ethyl acetate 50:1; 2’’’’: hexanes/
ethyl acetate 10:1).
9-Ethyl-3-[3,4’,4’’,4’’’-tetrahexyl(2,2’:5’,2’’:5’’,2’’’-quaterthiophene)-5-yl]car-
bazole (4):[4] Orange oil; 1H NMR (400 MHz, CDCl3): d=0.89–0.95 (m,
12H), 1.30–1.44 (m, 24H), 1.46 (t, 3H, J=7.2 Hz), 1.62–1.80 (m, 8H),
2.63 (t, 2H, J=7.8 Hz), 2.75–2.87 (m, 6H), 4.38 (q, 2H, J=7.2 Hz), 6.91
(d, 1H, J=1.3 Hz), 6.99 (s, 1H), 7.00 (d, 1H, J=1.3 Hz), 7.02 (s, 1H),
7.21 (s, 1H), 7.27 (ddd, 1H, J=7.5, 7.0, 1.0 Hz), 7.43–7.39 (m, 2H), 7.50
(ddd, 1H, J=8.2, 7.0, 1.2 Hz), 7.73 (dd, 1H, J=8.5, 1.8 Hz), 8.15 (d, 1H,
J=7.5 Hz), 8.32 ppm (d, 1H, J=1.8 Hz); 13C NMR (100 MHz, CDCl3):
d=13.8, 14.1 (ꢃ3), 14.1 (ꢃ2), 22.6 (ꢃ3), 22.7, 29.0, 29.2, 29.3, 29.4, 29.5,
29.7, 30.4, 30.5 (ꢃ3), 30.6, 31.7 (ꢃ5), 37.5, 108.6, 108.7 (ꢃ2), 119.0, 119.9,
120.5, 122.8, 123.3, 123.7, 125.0, 125.2, 125.9, 127.0, 128.1, 128.2, 128.8,
129.9, 130.8, 133.6, 134.3, 135.5, 139.4, 139.5, 139.6, 140.3, 140.4, 143.1,
143.6 ppm.
3-[3,4’-Dihexyl(2,2’-bithiophene)-5-yl]-9-phenylcarbazole (2’): Yellow
sticky oil; 1H NMR (400 MHz, CDCl3): d=0.88–0.91 (m, 6H), 1.32–1.40
(m, 12H), 1.60–1.73 (m, 4H), 2.62 (t, 2H, J=8.4 Hz), 2.79 (t, 2H, J=
8.4 Hz), 6.88 (s, 1H), 7.00 (d, 1H, J=1.2 Hz), 7.19 (s, 1H), 7.30–7.39 (m,
1H), 7.40–7.47 (m, 4H), 7.55–7.65 (m, 5H), 8.17 (d, 1H, J=8.0 Hz),
8.33 ppm (d, 1H, J=1.6 Hz); 13C NMR (100 MHz, CDCl3): d=14.1, 22.6
(ꢃ2), 29.0, 29.3, 29.5, 30.4, 30.5, 30.7, 31.7, 109.9, 110.1, 117.3, 119.6,
120.2, 120.4, 123.3, 123.8, 124.1, 125.1, 126.3, 126.5, 126.9, 127.0, 127.6,
129.5, 129.9, 136.1, 137.5, 140.3, 140.4, 141.4, 142.7, 143.6 ppm; IR (KBr):
n˜ =3050, 2924, 2854, 1599, 1501, 1454, 1362, 1330, 1233, 1175, 1027, 912,
836, 806, 744, 696, 682, 667, 659, 640, 622 cmÀ1; HRMS (FAB): m/z: calcd
for C38H41NS2: 575.2860 [M]+; found: 575.2689.
Step 6: Improved procedure for the a-formylation of the thiophene ring
of tetramer 4 (Scheme 6): The Vilsmeier reagent was added to an ice-
cold solution of quaterthiophene 4 (270 mg, 0.31 mmol) in dry DMF
(2 mL), which was prepared in situ with phosphorus oxychloride
(0.12 mL) in DMF (0.6 mL) at 08C for 30 min. Then, the mixture was
stirred at 708C for 7 h. After cooling, the reaction mixture was quenched
with 10% aq. sodium acetate (35 mL) and extracted with ethyl acetate
(20 mL) three times. The combined organic layers were washed with
water (20 mL) and brine (20 mL), dried over anhydrous sodium sulfate
and evaporated under reduced pressure. The crude product was purified
by column chromatography on silica gel (hexanes/ethyl acetate 15:1) to
give the aldehyde 5 (272 mg, 0.31 mmol) in 99% yield.
3-[3,4’-Dihexyl(2,2’-bithiophene)-5-yl]-N-methylindole (2’’): Light-yellow
sticky oil; 1H NMR (400 MHz, CDCl3): d=0.88–0.91 (m, 6H), 1.32–1.41
(m, 12H), 1.62–1.69 (m, 4H), 2.61 (t, 2H, J=8.4 Hz), 2.76 (t, 2H, J=
8.4 Hz), 3.78 (s, 3H), 6.49 (d, 1H, J=2.4 Hz), 6.86 (s, 1H), 6.97 (d, 1H,
J=1.6 Hz), 7.04 (d, 1H, J=3.2 Hz), 7.11 (s, 1H), 7.29 (d, 1H, J=8.4 Hz),
7.47 (dd, 1H, J=8.4, 1.6 Hz), 7.85 ppm (d, 2H, J=1.2 Hz); 13C NMR
(100 MHz, CDCl3): d=14.1, 22.6 (ꢃ2), 29.0, 29.3, 29.5, 30.4, 30.5, 30.6,
31.7, 32.9, 11.3, 109.5, 118.0, 119.4, 120.1, 124.8, 125.9, 126.7, 128.8, 129.1,
129.6, 136.3, 136.4, 140.1, 143.5 ppm (ꢃ2); IR (KBr): n˜ =3100, 2925, 2854,
1616, 1537, 1467, 1420, 1377, 1332, 1297, 1247, 1155, 1106, 1080, 1010,
913, 832, 796, 740, 718, 682, 675, 641, 629, 611 cmÀ1; HRMS (FAB): m/z:
calcd for C29H37NS2: 463.2367 [M]+; found: 463.2386.
5’’’-(9-Ethyl-9H-carbazol-3-yl)-3’,3’’,3’’’,4-tetrahexyl(2,2’:5’,2’’:5’’,2’’’-quar-
terthiophene)-5-carboxaldehyde (5):[4] Dark-orange oil; 1H NMR
(400 MHz, CDCl3): d=0.95–0.88 (m, 12H), 1.29–1.42 (m, 24H), 1.46 (t,
3H, J=7.2 Hz), 1.68–1.80 (m, 8H), 2.79–2.86 (m, 6H), 2.95 (t, 2H, J=
7.8 Hz), 4.38 (q, 2H, J=7.2 Hz), 7.01 (s, 1H), 7.02 (s, 1H), 7.06 (s, 1H),
7.21 (s, 1H), 7.27 (ddd, 1H, J=7.9, 7.1, 0.9 Hz), 7.39–7.43 (m, 2H), 7.50
(ddd, 1H, J=8.2, 7.1, 1.1 Hz), 7.72 (dd, 1H, J=8.5, 1.8 Hz), 8.14 (d, 1H,
J=7.9 Hz), 8.31 (d, 1H, J=1.8 Hz), 10.02 ppm (s, 1H); 13C NMR
(100 MHz, CDCl3): d=13.7, 14.0 (ꢃ2), 14.1 (ꢃ2), 22.5, 22.6 (ꢃ3), 28.3,
28.9, 29.2 (ꢃ2), 29.3, 29.5, 29.7, 29.8, 30.1, 30.3, 30.4, 31.3, 31.5, 31.6 (ꢃ2),
31.7, 37.5, 108.5, 108.6, 117.3, 119.0, 120.4, 122.7, 123.2, 123.6, 124.9,
125.0, 125.9, 127.7, 128.0, 128.4 (ꢃ2), 129.1, 129.2, 135.1, 135.9, 136.0,
139.4, 140.3, 140.4, 140.6, 142.4, 143.3, 145.1, 153.2, 181.4 ppm.
4-[3,4’-Dihexyl(2,2’-bithiophene)-5-yl]-N,N-diphenylbenzenamine
(2’’’):
Yellow sticky oil; 1H NMR (400 MHz, CDCl3): d=0.85–0.89 (m, 6H),
1.28–1.36 (m, 12H), 1.59–1.65 (m, 4H), 2.58 (t, 2H, J=8.4 Hz), 2.72 (t,
2H, J=8.4 Hz), 6.85 (s, 1H), 6.94 (d, 1H, J=1.2 Hz), 6.99–7.10 (m, 8H),
7.22–7.26 (m, 5H), 7.41 ppm (d, 2H, J=8.4 Hz); 13C NMR (100 MHz,
CDCl3): d=14.1, 22.6, 29.0, 29.2, 29.4, 30.4, 30.5, 30.6, 31.7, 119.7, 123.0,
123.7, 124.5, 125.1, 126.3, 126.9, 128.3, 129.3, 129.8, 136.0, 140.2, 141.4,
143.6, 147.2, 147.5 ppm; IR (KBr): n˜ =3031, 2926, 2855, 1591, 1507, 1493,
1327, 1280, 1219, 1177, 853, 822, 775, 739, 696, 675, 663, 647, 625 cmÀ1
;
HRMS (EI): m/z: calcd for C38H43NS2 [FAB]+: 577.2837; found:
Step 7:[4] Completion of the synthesis of MK-2 (Scheme 6): A mixture of
577.2851.
aldehyde
5
(211 mg, 0.24 mmol) with cyanoacetic acid (40 mg,
0.48 mmol) in a mixed solvent of dry acetonitrile (5 mL) and toluene
(2 mL) was heated at reflux in the presence of piperidine (1 mL) for 4 h.
After cooling, the reaction mixture was diluted with dichloromethane
(30 mL), and the organic layer was washed with water (10 mL) and brine
(10 mL), dried over anhydrous sodium sulfate, and evaporated under re-
duced pressure. The crude product was purified by column chromatogra-
phy on silica gel (chloroform/ethanol) to give the dye, MK-2 (216 mg,
0.23 mmol), in 95% yield.
4-[3,4’-Dihexyl(2,2’-bithiophene)-5-yl]phenylmorpholine (2’’’’): Light-
yellow sticky oil; 1H NMR (400 MHz, CDCl3): d=0.87–0.90 (m, 6H),
1.27–1.39 (m, 12H), 1.61–1.66 (m, 4H), 2.59 (t, 2H, J=8.4 Hz), 2.72 (t,
2H, J=8.4 Hz), 3.17 (t, 4H, J=4.8 Hz), 3.85 (t, 4H, J=4.8 Hz), 6.85 (d,
1H, J=1.2 Hz), 6.88 (d, 2H, J=8.4 Hz), 6.94 (d, 1H, J=1.2 Hz), 7.01 (s,
1H), 7.48 ppm (d, 2H, J=8.4 Hz); 13C NMR (100 MHz, CDCl3): d=14.1,
14.2, 22.6, 29.0, 29.3, 29.4, 30.4, 30.5, 30.6, 31.7, 49.0, 66.8, 115.6, 119.6,
124.6, 125.9, 126.4, 126.8, 129.2, 136.1, 140.2, 141.7, 143.5, 150.5 ppm; IR
Chem. Eur. J. 2013, 19, 2067 – 2075
ꢂ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2073