Organic Letters
Letter
1304. (h) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.;
Su, S.; Blackmond, D. G.; Baran, P. S. Innate C-H trifluoromethy-
lation of heterocycles. Proc. Natl. Acad. Sci. U. S. A. 2011, 108,
14411−14415. (i) Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.;
Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. Trifluoromethylation of
various aromatic compounds by CF3I in the presence of Fe(II)
compound, H2O2 and dimethylsulfoxide. J. Fluorine Chem. 2010, 131,
98−105. (j) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13,
5464−5467.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The CC FLOW Project (Austrian Research Promotion Agency
FFG Grant 862766) is funded through the Austrian COMET
Program by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT), the Austrian Federal
Ministry of Science, Research and Economy (BMWFW), and
the State of Styria (Styrian Funding Agency SFG).
(11) For selected examples of arene trifluoromethylations via
photochemical generation of CF3 radicals, see: (a) Ouyang, Y.; Xu,
X. H.; Qing, F. L. Trifluoromethanesulfonic Anhydride as a Low-Cost
and Versatile Trifluoromethylation Reagent. Angew. Chem., Int. Ed.
2018, 57, 6926−6929. (b) Yang, B.; Yu, D.; Xu, X. H.; Qing, F. L.
Visible-Light Photoredox Decarboxylation of Perfluoroarene Iodine-
(III) Trifluoroacetates for C−H Trifluoromethylation of (Hetero)-
arenes. ACS Catal. 2018, 8, 2839−2843. (c) Egami, H.; Ito, Y.; Ide,
T.; Masuda, S.; Hamashima, Y. Simple Photo-Induced Trifluorome-
thylation of Aromatic Rings. Synthesis 2018, 50, 2948−2953.
(d) Torti, E.; Protti, S.; Fagnoni, M. N-Aryltrifluoromethanesulfoni-
mides as new trifluoromethylating agents for the (photo)catalyst-free
functionalization of (hetero)aromatics. Chem. Commun. 2018, 54,
4144−4147. (e) Liu, P.; Liu, W.; Li, C. J. Catalyst-Free and Redox-
Neutral Innate Trifluoromethylation and Alkylation of Aromatics
Enabled by Light. J. Am. Chem. Soc. 2017, 139, 14315−14321.
(f) Corsico, S.; Fagnoni, M.; Ravelli, D. Sunlight decatungstate
photoinduced trifluoromethylations of (hetero)aromatics and elec-
tron-poor olefins. Photochem. Photobiol. Sci. 2017, 16, 1375−1380.
(g) Lin, J.; Li, Z.; Kan, J.; Huang, S.; Su, W.; Li, Y. Photo-Driven
Redox-Neutral Decarboxylative Carbon-Hydrogen Trifluoromethyla-
tion of (Hetero)arenes with Trifluoroacetic Acid. Nat. Commun.
2017, 8, 14353. (h) Chang, B.; Shao, H.; Yan, P.; Qiu, W.; Weng, Z.;
Yuan, R. Quinone-Mediated Trifluoromethylation of Arenes and
Heteroarenes with Visible Light. ACS Sustainable Chem. Eng. 2017, 5,
334−341. (i) Li, L.; Mu, X.; Liu, W.; Wang, Y.; Mi, Z.; Li, C. J. Simple
and Clean Photoinduced Aromatic Trifluoromethylation Reaction. J.
Am. Chem. Soc. 2016, 138, 5809−5812. (j) Beatty, J. W.; Douglas, J.
J.; Cole, K. P.; Stephenson, C. R. J. A Scalable and Operationally
Simple Radical Trifluoromethylation. Nat. Commun. 2015, 6, 7919.
REFERENCES
■
(1) (a) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic
Electrochemical Methods since 2000: On the Verge of a Renaissance.
Chem. Rev. 2017, 117, 13230−13319. (b) Echeverria, P.-G.;
Delbrayelle, D.; Letort, A.; Nomertin, F.; Perez, M.; Petit, L. The
Spectacular Resurgence of Electrochemical Redox Reactions in
Organic Synthesis. Aldrichimica Acta 2018, 51, 3−19. (c) Waldvogel,
S. R.; Janza, B. Renaissance of electrosynthetic methods for the
construction of complex molecules. Angew. Chem., Int. Ed. 2014, 53,
7122−7123.
(2) (a) Horn, E. J.; Rosen, B. R.; Baran, P. S. Synthetic Organic
Electrochemistry: An Enabling and Innately Sustainable Method. ACS
̈
Cent. Sci. 2016, 2, 302−308. (b) Schafer, H. J. Contributions of
organic electrosynthesis to green chemistry. C. R. Chim. 2011, 14,
745−765.
(3) For an extensive treatise on organic electrochemistry, see:
Hammerich, O., Speiser, H., Eds. Organic Electrochemistry; CRC Press,
Taylor and Francis Group: Boca Raton, FL, 2016.
(4) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals: Reactive
Intermediates with Translational Potential. J. Am. Chem. Soc. 2016,
138, 12692−12714.
(5) Studer, A. A “Renaissance” in Radical Trifluoromethylation.
Angew. Chem., Int. Ed. 2012, 51, 8950−8958.
(6) Yerien, D. E.; Bonesi, S.; Postigo, A. Fluorination methods in
drug discovery. Org. Biomol. Chem. 2016, 14, 8398−8427.
(7) (a) Ojima, I., Ed. Fluorine in Medicinal Chemistry and Chemical
́
(12) Tommasino, J. B.; Brondex, A.; Medebielle, M.; Thomalla, M.;
́
́
Biology; Wiley-VCH: Chichester, U.K., 2009. (b) Begue, J.-P.;
Bonnet-Delphon, D. Bioorganic and Medicinal Chemistry of Fluorine;
John Wiley & Sons: Hoboken, NJ, 2008.
(8) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F.
Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives
and Heteroarenes. Chem. Rev. 2015, 115, 1847−1935.
(9) DrugBank Database, version 5.1.4 (July 2019 release). www.
Langlois, B. L.; Billard, T. Trifluoromethylation Reactions with
Potassium Trifluoromethanesulfinate under Electrochemical Oxida-
tion. Synlett 2002, 1697−1699.
(13) O’Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran,
P. S.; Blackmond, D. G. Radical C-H Functionalization of
Heteroarenes under Electrochemical Control. Angew. Chem., Int. Ed.
2014, 53, 11868−11871.
(14) (a) Jud, W.; Kappe, C. O.; Cantillo, D. Catalyst Free
Oxytrifluoromethylation of Alkenes via Paired Electrolysis in
Organic-Aqueous Media. Chem. - Eur. J. 2018, 24, 17234−17238.
(b) Jud, W.; Kappe, C. O.; Cantillo, D. On the Reactivity of
Anodically Generated Trifluoromethyl Radicals Toward Aryl Alkynes
in Organic/Aqueous Media. Org. Biomol. Chem. 2019, 17, 3529−
3537.
(15) Wender, P. A.; Smith, T. E.; Vogel, P.; Gerber-Lemaire, S.
Trifluoromethanesulfonyl Chloride. In Encyclopedia of Reagents for
(16) Nagib, D. A.; MacMillan, D. W. C. Trifluoromethylation of
arenes and heteroarenes by means of photoredox catalysis. Nature
2011, 480, 224−228.
(17) Netscher, T.; Bohrer, P. Formation of Sulfinate Esters in the
Synthesis of Triflates. Tetrahedron Lett. 1996, 37, 8359−8362.
(18) (a) Martínez-Barrasa, V.; García de Viedma, A.; Burgos, C.;
Alvarez-Builla, J. Synthesis of Biaryls via Intermolecular Radical
Addition of Heteroaryl and Aryl Bromides onto Arenes. Org. Lett.
2000, 2, 3933−3935. (b) Crich, D.; Hwang, J.-T. Stannane-Mediated
Radical Addition to Arenes. Generation of Cyclohexadienyl Radicals
and Increased Propagation Efficiency in the Presence of Catalytic
Benzeneselenol. J. Org. Chem. 1998, 63, 2765−2770.
(10) For selected examples of arene trifluoromethylations via
chemical generation of CF3 radicals, see: (a) Zhang, J.; Yang, Y.;
Fang, J.; Deng, G. J.; Gong, H. Metal-Free, Initiator-Free Graphene
Oxide-Catalyzed Trifluoromethylation of Arenes. Chem. - Asian J.
2017, 12, 2524−2527. (b) Wang, D.; Deng, G. J.; Chen, S.; Gong, H.
Catalyst-free direct C−H trifluoromethylation of arenes in water−
acetonitrile. Green Chem. 2016, 18, 5967−5970. (c) Natte, K.;
Jagadeesh, R. V.; He, L.; Rabeah, J.; Chen, J.; Taeschler, C.; Ellinger,
S.; Zaragoza, F.; Neumann, H.; Bruckner, A.; Beller, M. Palladium-
̈
Catalyzed Trifluoromethylation of (Hetero)Arenes with CF3Br.
Angew. Chem., Int. Ed. 2016, 55, 2782−2786. (d) Shi, G.; Shao, C.;
Pan, S.; Yu, J.; Zhang, Y. Silver-Catalyzed C−H Trifluoromethylation
of Arenes Using Trifluoroacetic Acid as the Trifluoromethylating
Reagent. Org. Lett. 2015, 17, 38−41. (e) Mejía, E.; Togni, A.
Rhenium-Catalyzed Trifluoromethylation of Arenes and Heteroarenes
by Hypervalent Iodine Reagents. ACS Catal. 2012, 2, 521−527.
(f) Fujiwara, Y.; Dixon, J. A.; O’hara, F.; Funder, E. D.; Dixon, D. D.;
́
Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.;
Ishihara, Y.; Baran, P. S. Practical and innate carbon-hydrogen
functionalization of heterocycles. Nature 2012, 492, 95−99. (g) Chu,
L.; Qing, F. L. Copper-Catalyzed Direct C−H Oxidative Trifluor-
omethylation of Heteroarenes. J. Am. Chem. Soc. 2012, 134, 1298−
E
Org. Lett. XXXX, XXX, XXX−XXX