ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Parallel Copper Catalysis:
Diastereoselective Synthesis
of Polyfunctionalized Azetidin-2-imines
Yanpeng Xing, Hongyang Zhao, Qiongyi Shang, Jing Wang, Ping Lu,* and
Yanguang Wang*
Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
orgwyg@zju.edu.cn; pinglu@zju.edu.cn
Received April 8, 2013
ABSTRACT
An efficient and diastereoselective synthesis of highly functionalized azetidin-2-imines has been achieved through a parallel catalysis strategy,
including a copper-catalyzed azideꢀalkyne cycloaddition, a copper-catalyzed CspꢀCsp2 cross-coupling reaction, and an intermolecular [2 þ 2]
cycloaddition. The products could be conveniently converted into the structurally interesting dihydroazeto[1,2-a]benzo[e]azepin-2(4H)-imines.
As a new concept, cascade catalysis1 or concurrent
tandem catalysis2 is becoming a rapid, efficient, and con-
venient strategy in organic synthesis. This strategy inte-
grates multiple catalytic cycles in a single procedure and
allows sophisticated compounds to be easily prepared
from commercially available starting materials.3 Since
both time and resources can be efficiently saved by simpli-
fying the operating procedures, this concept fits the basic
requirements of green chemistry and is of unique impor-
tance for unstable intermediates.
Recently, copper-catalyzed azideꢀalkyne cycloadditions
(CuAACs) were developed for the formation of keteni-
mines,4,5 which could be efficiently transformed into a
variety of nitrogen-containing heterocyclic compounds
with economic and ecological values.6,7 Inspired by our
previous success with ketenimine chemistry3d,7 and the
literature on the copper-catalyzed CspꢀCsp2 cross-coupling
reaction,8 we became interested in cascade reactions that
can combine a copper-catalyzed azideꢀalkyne cycloaddi-
tion and a copper-catalyzed CspꢀCsp2 cross-coupling in a
parallel catalysis approach (Figure 1).
(1) (a) Bruggink, A.; Schoevaart, R.; Kieboom, T. Org. Process Res.
Dev. 2003, 7, 622. (b) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2005, 127, 15051. (c) Houri, A. F.; Xu, Z.;
Cogan, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 2943.
(2) (a) Wasilke, J. C.; Obrey, S. J.; Bakerand, R. T.; Bazan, G. C.
Chem. Rev. 2005, 105, 1001. (b) Fructos, M. R.; Alvarez, E.; Diaz-
Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2010, 132, 4600. (c)
Cannon, K. A.; Geuther, M. E.; Kelly, C. K.; Lin, S.; MacArthur,
A. H. R. Organometallics. 2011, 30, 4067.
(3) (a) Yang, T.; Ferrali, A.; Campbelland, L.; Dixon, D. J. Chem.
Commun. 2008, 25, 2923. (b) Zhang, X.; Zhang, S.; Wang, W. Angew.
Chem., Int. Ed. 2010, 49, 1481. (c) Wender, P. A.; Stemmler, R. T.; Sirois,
L. E. J. Am. Chem. Soc. 2010, 132, 2532. (d) Wang, J.; Wang, J.; Zhu, Y.;
Lu, P.; Wang, Y. Chem. Commun. 2011, 47, 3275. (e) Ozboya, K. E.;
Rovis, T. Chem. Sci. 2011, 2, 1835. (f) Candish, L.; Lupton, D. W. Chem.
Sci. 2012, 3, 380. (g) Roy, S.; Chen, K. Org. Lett. 2012, 14, 2496.
(4) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596. (b) Tornøe, C. W.; Christensen,
C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (c) Bae, I.; Han, H.; Chang,
S. J. Am. Chem. Soc. 2005, 127, 2038.
(6) For selected examples, see: (a) Cho, S. H.; Yoo, E. J.; Bae, I.;
Chang, S. J. Am. Chem. Soc. 2005, 127, 16046. (b) Yoo, E. J.; Ahlquist,
M. R.; Bae, I.; Sharpless, K. B.; Fokin, V. V.; Chang, S. J. Org. Chem.
2008, 73, 5520. (c) Li, S.; Luo, Y.; Wu, J. Org. Lett. 2011, 13, 4312. (d)
Yao, W.; Pan, L.; Zhang, Y.; Wang, G.; Wang, X.; Ma, C. Angew.
Chem., Int. Ed. 2010, 49, 9210. (e) Whiting, M.; Fokin, V. V. Angew.
Chem., Int. Ed. 2006, 45, 3157. (f) Li, B.; Yang, B.; Wang, S.; Zhang,
Y.; Cao, X.; Tu, Y. Chem. Sci. 2012, 3, 1975. (g) Namitharan, K.;
Pitchumani, K. Org. Lett. 2011, 13, 5728.
(7) (a) Cui, S.; Lin, X.; Wang, Y. Org. Lett. 2006, 8, 4517. (b) Cui, S.;
Wang, J.; Wang, Y. Org. Lett. 2007, 9, 5023. (c) Shen, Y.; Cui, S.; Wang,
J.; Chen, X.; Lu, P.; Wang, Y. Adv. Synth. Catal. 2010, 352, 1139. (d) Li,
Y.; Hong, D.; Zhu, Y.; Lu, P.; Wang, Y. Tetrahedron. 2011, 67, 8086. (e)
Lu, W.; Song, W.; Hong, D.; Lu, P.; Wang, Y. Adv. Synth. Catal. 2009,
351, 1768.
(8) (a) Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem.
Soc. 2003, 125, 2890. (b) Bates, C. G.; Saejueng, P.; Murphy, J. M.;
Venkataraman, D. Org. Lett. 2002, 4, 4727. (c) Marshall, J. A.; Chobanian,
H. R.; Yanik, M. M. Org. Lett. 2001, 3, 4107. (d) Dubbaka, S. R.; Kienle,
M.; Mayr, H.; Knochel, P. Angew. Chem., Int. Ed. 2007, 46, 9093. (e) Ye,
F.; Ma, X.; Xiao, Q.; Li, H.; Zhang, Y.; Wang, J. J. Am. Chem. Soc.
2012, 134, 5742. (f) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. J. Am. Chem. Soc.
2007, 129, 9300.
(5) For recent reviews, see: (a) Lu, P.; Wang, Y. Chem. Soc. Rev.
2012, 41, 5687. (b) Kim, S. H.; Park, S. H.; Choi, J. H.; Chang, S.
Chem.;Asian J. 2011, 6, 2618. (c) Hein, J. E.; Fokin, V. V. Chem. Soc.
Rev. 2010, 39, 1302. (d) Lu, P.; Wang, Y. Synlett 2010, 2, 165. (e) Yoo,
E. J.; Chang, S. Curr. Org. Chem. 2009, 13, 1766.
r
10.1021/ol4010323
XXXX American Chemical Society