J. Zhang et al. / Tetrahedron Letters 43 (2002) 9687–9689
9689
stituent R2 on the epoxy side exerts a small effect on the
reduction potential and the reactivity.
E.; Ishiyama, K.; Kato, T.; Horaguchi, T.; Shimizu, T. J.
Org. Chem. 1992, 57, 5352–5359.
5. (a) Hasegawa, E.; Ishiyama, K.; Horaguchi, T.; Shimizu,
T. J. Org. Chem. 1991, 56, 1631–1635; (b) Cossy, J.;
Bouzide, A.; Ibhi, S.; Aclinou, P. Tetrahedron 1991, 47,
7775–7782.
6. (a) Hasegawa, E.; Kato, T.; Kitazume, T.; Yanagi, K.;
Hasegawa, K.; Horaguchi, T. Tetrahedron Lett. 1996, 37,
7079–7082; (b) Hasegawa, E.; Yoneoka, A.; Suzuki, K.;
Kato, T.; Kitazume, T.; Yanagi, K. Tetrahedron 1999, 55,
12957–12968.
7. (a) Yasui, S.; Ohno, A. Bioorg. Chem. 1986, 14, 70–96;
(b) Fukuzumi, S.; Tanaka, T. In Photoinduced Electron
Transfer, Part C; Fox, M. A.; Chanon, M., Eds.;
Elsevier: Amsterdam, 1988; p. 578; (c) Fukuzumi, S.;
Suenobu, T.; Kawamura, S.; Ishida, A.; Mikami, K.
Chem. Commun. 1997, 291–292.
It is worth noting that although the reactions of 1a–e
are thermodynamically feasible they did not react in the
absence of magnesium perchlorate. This suggests that
kinetic factors may also contribute to the reaction.
Metal ion-catalyzed reduction of carbonyl compounds
by HDHP and other NADH model molecules has been
extensively studied previously.7 It was suggested that
magnesium ions coordinate to carbonyls and may lower
the activation energy of the initial single electron trans-
fer step, hence catalyzing the electron transfer
process.7b
In conclusion, this work affords a new, facile approach
for the selective transformation of a,b-epoxy aryl
ketones to the corresponding b-hydroxy ketones with
high yields and using long wavelength irradiation. The
crucial difference of this approach from the photo-
chemical cleavage of a,b-epoxy ketones reported pre-
viously4–6 is excitation of the electron and proton donor
(HDHP) rather than excitation of the a,b-epoxy
ketone. In the latter case, side reactions from the
excited triplet ketones were observed, making the reac-
tion less clean and not as efficient as the present one.
Extension of this approach to a,b-epoxy alkyl ketones
and other photochemical reduction reactions is under-
way in this laboratory.
8. (a) Jin, M. Z.; Yang, L.; Wu, L. M.; Liu, Y. C.; Liu, Z.
L. Chem. Commun. 1998, 2451–2452; (b) Jin, M. Z.;
Zhang, D.; Yang, L.; Liu, Y. C.; Liu, Z. L. Tetrahedron
Lett. 2000, 41, 7357–7360; (c) Zhang, W.; Shao, X.;
Yang, L.; Liu, Z. L.; Chow, Y. L. J. Chem. Soc., Perkin
Trans. 2 2002, 1029–1032; (d) Zhang, W.; Yang, L.; Wu,
L. M.; Liu, Y. C.; Liu, Z. L. J. Chem. Soc., Perkin Trans.
2 1998, 1189–1193; (e) Yang, L.; Zhang, M. X.; Liu, Y.
C.; Liu, Z. L.; Chow, Y. L. Chem. Commun. 1995,
1055–1061.
1
9. Spectral data for some typical products. 2a: H NMR (80
MHz, CDCl3/TMS), l (ppm) 3.39 (d, J=6.0 Hz, 2H,
CH2), 5.37 (t, J=6.0 Hz, 1H, CH), 7.30–8.01 (m, 10H,
2×PhH), MS (m/z, %) 226 (M+, 12), 208 (M+−18, 27), 105
Acknowledgements
1
(M+−121, 100); 2d: H NMR (80 MHz, CDCl3/TMS), l
(ppm) 1.02 (d, J=5.7 Hz, 6H, 2×CH3), 1.83 (m, 1H, CH),
3.09 (d, J=5.6 Hz, 2H, CH2), 4.01 (m, 1H, CH), 7.35–
8.04 (m, 5H, PhH), MS (m/z, %) 192 (M+, 2), 174
We thank the National Natural Science Foundation of
China (Grant Nos. 29972018 and QT Program
29802005) for financial support.
1
(M+−18, 32), 105 (M+−87, 100); 2e: H NMR (80 MHz,
CDCl3/TMS), l (ppm) 1.27 (d, J=6.5 Hz, 3H, CH3),
3.07 (d, J=5.9 Hz, 2H, CH2), 3.40 (s, 1H, OH), 4.46 (m,
1H, CH), 7.33–7.96 (m, 5H, PhH), MS (m/z, %) 164 (M+,
References
1
4), 146 (M+−18, 13), 105 (M+−59, 100); 3: H NMR (80
1. (a) Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 51,
2596–2599; (b) Miranda Moreno, M. J. S.; Sae Melo, M.
L.; Campos Neves, A. S. Tetrahedron Lett. 1993, 34,
353–356; (c) McChesney, J. D.; Thompson, T. N. J. Org.
Chem. 1985, 50, 3473–3481; (d) Osuka, A.; Taka-Oka,
K.; Suzuki, H. Chem. Lett. 1984, 271–272; (e) Miyashita,
M.; Hoshino, M.; Suzuki, T.; Yoshikoshi, A. Tetrahedron
Lett. 1987, 28, 4293–4296; (f) Engman, L.; Stern, D. J.
Org. Chem. 1994, 59, 5179–5183.
MHz, CDCl3/TMS), l (ppm) 1.42 (t, J=7.1 Hz, 6H,
2×CH3), 2.87 (s, 6H, 2×CH3), 4.41 (q, J=7.1 Hz, 4H,
2×CH2), 7.60 (s, 1H, ArH); MS (m/z, %) 252 (M+, 100).
10. Mella, M.; Fagnoni, M.; Freccero, M.; Fasani, E.; Albini,
A. Chem. Soc. Rev. 1998, 27, 81–89.
11. Maslak, P.; Narvaez, J. N. Angew. Chem., Int. Ed. Engl.
1990, 29, 283–285.
12. (a) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259–271;
(b) DG=23.06 (ED/D −E /A−E0,0 −0.06) kcal/mol in
−
+
2. Jankowiska, R.; Mhehe, G. L.; Liu, H. J. Chem. Com-
A
MeCN.
mun. 1999, 1581–1582.
13. The fluorescence spectrum of HDHP was determined in
acetonitrile giving the absorption and emission maximum
at 360 and 430 nm, respectively, corresponding to the E0,0
of 3.2 eV.
3. Hardouin, C.; Chevallier, F.; Rousseau, B.; Doris, E. J.
Org. Chem. 2001, 66, 1046–1048.
4. (a) Hasegawa, E.; Ishiyama, K.; Horaguchi, T.; Shimizu,
T. Tetrahedron Lett. 1991, 32, 2029–2032; (b) Hasegawa,