J
V. Rajeshkumar et al.
Paper
Synthesis
13C NMR (101 MHz, CDCl3): = 197.22, 194.54, 144.15, 143.77,
139.29, 135.25, 133.82, 133.25, 129.83, 129.21 (2C), 128.92, 128.22,
127.40, 45.84, 40.71, 21.65 (2C), 21.20.
HRMS (ESI): m/z [M + H]+ calcd for C25H25O2S: 389.1575; found:
389.1583.
A.; Vacondio, F.; Arosio, D.; Bianchini, F.; Zanardi, F. J. Med.
Chem. 2017, 60, 248.
(4) (a) McCrindle, B. W.; Ose, L.; Marais, A. D. J. Pediatr. 2003, 143,
74. (b) Chen, X.; Xiong, F.; Chen, W.; He, Q.; Chen, F. J. Org.
Chem. 2014, 79, 2723. (c) Dias, L. C.; Vieira, A. S.; Barreiro, E. J.
Org. Biomol. Chem. 2016, 14, 2291. (d) Estévez, V.; Villacampa,
M.; Menéndez, J. C. Org. Chem. Front. 2014, 1, 458. (e) Park, W. K.
C.; Kennedy, R. M.; Larsen, S. D.; Miller, S.; Roth, B. D.; Song, Y.;
Steinbaugh, B. A.; Sun, K.; Tait, B. D.; Kowala, M. C.; Trivedi, B. K.;
Auerbach, B.; Askew, V.; Dillon, L.; Hanselman, J. C.; Lin, Z.; Lu,
G. H.; Robertson, A.; Sekerke, C. Bioorg. Med. Chem. Lett. 2008,
18, 1151.
2,5-Di-p-tolyl-3-(p-tolylthio)-1H-pyrrole (3da)
To an oven-dried sealed tube equipped with a magnetic stir bar was
added 1,4-di-p-tolyl-2-(p-tolylthio)butane-1,4-dione
6 (100 mg,
0.257 mmol), ammonium formate (41 mg, 0.643 mmol) and acetic
acid (2 mL). The tube was then sealed with a screw-type cap and the
resulting reaction mixture was placed in an oil bath at 120 °C with
stirring. The progress of the reaction was monitored by TLC. Upon
completion of the reaction, the reaction mixture was cooled to r.t. and
extracted with EtOAc (3 × 15 mL). The extract was then washed with
aqueous brine solution. After drying over Na2SO4 and evaporation, the
crude product was purified by column chromatography on silica gel
(eluent: petroleum ether/EtOAc) to afford 3da (82 mg, 86%).
(5) (a) Hantzsch, A. Ber. Dtsch. Chem. Ges. 1890, 23, 1474. (b) Knorr,
L. Ber. Dtsch. Chem. Ges. 1884, 17, 1635. (c) Paal, C. Ber. Dtsch.
Chem. Ges. 1885, 18, 367.
(6) (a) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V.
Chem. Rev. 2013, 113, 3084. (b) Zhou, C.; Ma, D. Chem. Commun.
2014, 50, 3085. (c) Trost, B. M.; Lumb, J.-P.; Azzarelli, J. M. J. Am.
Chem. Soc. 2011, 133, 740. (d) Borra, S.; Chandrasekhar, D.;
Newar, U. D.; Maurya, R. A. J. Org. Chem. 2019, 84, 1042.
(e) Zhang, M.; Fang, X.; Neumann, H.; Beller, M. J. Am. Chem. Soc.
2013, 135, 11384. (f) Jiang, Y.; Chan, W. C.; Park, C.-M. J. Am.
Chem. Soc. 2012, 134, 4104. (g) Daw, P.; Ben-David, Y.; Milstein,
D. J. Am. Chem. Soc. 2018, 140, 11931. (h) Li, B.; Wang, N.; Liang,
Y.; Xu, S.; Wang, B. Org. Lett. 2013, 15, 136. (i) Wang, L.;
Ackermann, L. Org. Lett. 2013, 15, 176. (j) Michlik, S.; Kempe, R.
Nat. Chem. 2013, 5, 141. (k) Rakshit, S.; Patureau, F. W.; Glorius,
F. J. Am. Chem. Soc. 2010, 132, 9585.
(7) (a) Estevez, V.; Villacampa, M.; Menéndez, J. C. Chem. Soc. Rev.
2010, 39, 4402. (b) Estévez, V.; Villacampa, M.; Menéndez, J. C.
Chem. Soc. Rev. 2014, 43, 4633. (c) Dhinakaran, I.; Padmini, V.;
Bhuvanesh, N. ACS Comb. Sci. 2016, 18, 236. (d) Xu, H.; Liu, H.-
W.; Chen, K.; Wang, G.-W. J. Org. Chem. 2018, 83, 6035.
(e) Balme, G. Angew. Chem. Int. Ed. 2004, 43, 6238. (f) Hong, D.;
Zhu, Y.-X.; Li, Y.; Lin, X.-F.; Lu, P.; Wang, Y.-G. Org. Lett. 2011, 13,
4668. (g) Wu, X. D.; Li, K.; Wang, S. S.; Liu, C.; Lei, A. W. Org. Lett.
2016, 18, 56. (h) Fleige, M.; Glorius, F. Chem. Eur. J. 2017, 23,
10773.
Funding Information
We thank the Department of Science and Technology (DST), New Del-
hi, India for the financial support for this work under a DST-INSPIRE
faculty scheme (DST/INSPIRE/04/2016/000295).
D
e
p
artm
e
ntof
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
M
i
n
i
stryof
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
(D
S
T/I
N
S
P
I
R
E/04/2
0
1
6/0
0
0
2
9
5)
Acknowledgment
We thank the National Institute of Technology Tiruchirappalli for the
use of infrastructures and facilities.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
(8) (a) Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q.
J. Am. Chem. Soc. 1999, 121, 54. (b) Kamijo, S.; Kanazawa, C.;
Yamamoto, Y. Tetrahedron Lett. 2005, 46, 2563. (c) Cyr, D. J. St.;
Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129, 12366. (d) Morin, M.
S. T.; Cyr, D. J. St.; Arndtsen, B. A. Org. Lett. 2010, 12, 4916.
(e) Lourdusamy, E.; Yao, L.; Park, C.-M. Angew. Chem. Int. Ed.
2010, 49, 7963.
(9) (a) Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J.
Angew. Chem. Int. Ed. 2011, 50, 8605. (b) Takeda, Y.; Kajihara, R.;
Kobayashi, N.; Noguchi, K.; Saito, A. Org. Lett. 2017, 19, 6744.
(c) Tang, S.; Liu, K.; Long, Y.; Gao, X.; Gao, M.; Lei, A. Org. Lett.
2015, 17, 2404. (d) Gao, Q.; Liu, Z.; Wang, Y.; Wu, X.; Zhang, J.;
Wu, A. Adv. Synth. Catal. 2018, 360, 1364.
(10) (a) Jalani, H. B.; Mali, J. R.; Park, H.; Lee, J. K.; Lee, K.; Lee, K.;
Choi, Y. Adv. Synth. Catal. 2018, 360, 4073. (b) Reddy, N. N. K.;
Rawat, D.; Adimurthy, S. J. Org. Chem. 2018, 83, 9412. (c) Wang,
Y.; Jiang, C.-M.; Li, H.-L.; He, F.-S.; Luo, X.; Deng, W.-P. J. Org.
Chem. 2016, 81, 8653. (d) Wu, X.; Zhao, P.; Geng, X.; Wang, C.;
Wu, Y. D.; Wu, A. X. Org. Lett. 2018, 20, 688.
(11) (a) Prabagar, B.; Mallick, R. K.; Prasad, R.; Gandon, V.; Sahoo, A.
K. Angew. Chem. Int. Ed. 2019, 58, 2365. (b) Dutta, S.; Mallick, R.
K.; Prasad, R.; Gandon, V.; Sahoo, A. K. Angew. Chem. Int. Ed.
2019, 58, 2289. (c) Yin, G.; Wang, Z.; Chen, A.; Gao, M.; Wu, A.;
Pan, Y. J. Org. Chem. 2008, 73, 3377.
References
(1) (a) Young, I. S.; Thornton, P. D.; Thompson, A. Nat. Prod. Rep.
2010, 27, 1801. (b) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J. F.
Chem. Rev. 2008, 108, 264. (c) Walsh, C. T.; Garneau-Tsodikova,
S.; Howard-Jones, A. R. Nat. Prod. Rep. 2006, 23, 517.
(d) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P.
RSC Adv. 2015, 5, 15233.
(2) (a) Biava, M.; Porretta, G. C.; Deidda, D.; Pompei, R.; Tafic, A.;
Manettic, F. Bioorg. Med. Chem. 2004, 12, 1453. (b) Teixeira, C.;
Barbault, F.; Rebehmed, J.; Liu, K.; Xie, L.; Lu, H.; Jiang, S.; Fan, B.;
Maurel, F. Bioorg. Med. Chem. 2008, 16, 3039. (c) Hughes, C. C.;
Prieto-Davo, A.; Jensen, P. R.; Fenical, W. Org. Lett. 2008, 10, 629.
(d) Sun, X.; Qiu, J.; Strong, S. A.; Green, L. S.; Wasley, J. W. F.;
Blonder, J. P.; Colagiovanni, D. B.; Mutka, S. C.; Stout, A. M.;
Richards, J. P.; Rosenthal, G. J. Bioorg. Med. Chem. Lett. 2011, 21,
5849. (e) Yang, T.; Ng, W. H.; Chen, H.; Chomchopbun, K.;
Huynh, T. H.; Go, M. L.; Kon, O. L. ACS Med. Chem. Lett. 2016, 7,
807. (f) Ching, K. C.; Kam, Y. W.; Merits, A.; Ng, L. F.; Chai, C. L.
J. Med. Chem. 2015, 58, 9196.
(3) (a) Zhu, Y.; Xu, L.; Zhang, J.; Hu, X.; Liu, Y.; Yin, H.; Lv, T.; Zhang,
H.; Liu, L.; An, H.; Liu, H.; Xu, J.; Lin, Z. Cancer Sci. 2013, 104,
1052. (b) Sartori, A.; Portioli, E.; Battistini, L.; Calorini, L.; Pupi,
© 2019. Thieme. All rights reserved. — Synthesis 2019, 51, A–K