Far less studied is the related halogenation/semipinacol
rearrangement cascade.9 In this last reaction, the transi-
ently formed haliranium ion undergoes a Wagnerꢀ
Meerwein alkyl migration, leading to the formation of
synthetically valuable β-halogenated ketones (Figure 1).
Whereas the chlorination- and bromination-initiated
WagnerꢀMeerwein rearrangements of electron-rich cyclic
enol ethers were shown to be amenable to asymmetric
catalysis,10 the development of enantioselective catalytic
fluorination- and iodination-initiated variants remains
underexplored.11 Very recently, we have proposed a solu-
tion to the above problem by adapting the anionic phase-
transfer catalysis (PTC) protocol to the fluorination/
semipinacol case.12 In the present manuscript, we wish to
report a new achiral-reagent/chiral-counterion catalytic sys-
tem that enables a highly stereoselective iodination/semipina-
col transposition sequence to take place. To the best of our
knowledge, a catalytic asymmetric protocol for the iodina-
tion-initiated WagnerꢀMeerwein rearrangement is unprece-
dented in the literature.
chloride at room temperature. To our great delight, the
iodination/semipinacol reaction sequence took place smoothly
and afforded the expected β-iodo spiroketone B1 as a single
diastereomer and in 91% isolated yield (Scheme 1). Seeking
a suitable asymmetric PTC system, we repeated the above
reaction in a less polar solvent (toluene) in the presence of a
base and catalytic amounts of the lipophilic chiral phospho-
ric acid L4 (TRIP).15 Disappointingly, even though the
reaction did proceed to completion, the recovered β-iodo
spiroketone was racemic.
Scheme 1. Optimization of the Iodinating Reagent S1ꢀ9
Figure 1. Concept behind enantioselective halonium ion-initiated
WagnerꢀMeerwein transposition of allylic alcohols. Hal = F, Cl,
Br, or I.
Next, given the remarkable success of Selectfluor in
anionic phase-transfer catalysis, we turned our attention
to DABCO-derived triply charged cations (S1ꢀ9) as po-
tential iodinating reagents (Scheme 1). These salts were
readily synthesizedusing experimental procedures adapted
from the literature.7b Dissapointingly, when employing S1,
the “exact” iodo analog of Selectfluor, no reaction was
observed under our previously established PTC conditions.
This observation could be tentatively explained by the
unfavored predissociation equilibrium of S1, generating
insufficient amounts of the monoligated iodine(I) intermedi-
ate required for reactivity with alkenes.13 Switching to the
bulkier and more lipophilic salts S2 and S3 turned out to be
beneficial for reactivity. When combined with catalytic L4 in
toluene, both of these iodinating reagents afforded full
conversion of A1 to B2, albeit with only insignificant levels
of asymmetric induction (ca. 60:40 e.r.).
We began our studies with the reaction of allylic cyclo-
butanol A1 with (collidine)2IþPF6 (S0) in methylene
ꢀ
(5) (a) Lozano, O.; Blessley, G.; Martinez del Campo, T.; Thompson,
A. L.; Giuffredi, G. T.; Bettati, M.; Walker, M.; Borman, R.; Gouverneur,
V. Angew. Chem., Int. Ed. 2011, 50, 8105–8109. (b) Rauniyar, V.; Lackner,
A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681–1684. (c)
Phipps, R. J.; Hiramatsu, K.; Toste, F. D. J. Am. Chem. Soc. 2012, 134,
8376–8379.
(6) (a) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B.
J. Am. Chem. Soc. 2010, 132, 3298–3300. (b) Jaganathan, A.; Garzan,
A.; Whitehead, D. C.; Staples, R. J.; Borhan, B. Angew. Chem., Int. Ed.
2011, 50, 2593–2596. (c) Nicolaou, K. C.; Simmons, N. L.; Ying, Y.;
Heretsch, P. M.; Chen, J. S. J. Am. Chem. Soc. 2011, 133, 8134–8137. (d)
Yousefi, R.; Whitehead, D. C.; Mueller, J. M.; Staples, R. J.; Borhan, B.
Org. Lett. 2011, 13, 608–611.
€
€
(7) (a) Hennecke, U.; Muller, C. H.; Frohlich, R. Org. Lett. 2011, 13,
860–863. (b) Wang, Y.-M.; Wu, J.; Hoong, C.; Rauniyar, V.; Toste,
F. D. J. Am. Chem. Soc. 2012, 134, 12928–12931. (c) Veitch, G. E.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2010, 49, 7332–7335. (d) Dobish,
M. C.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 6068–6071. (e)
Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900–903.
(8) (a) Gribble, G. W. Prog. Chem. Org. Nat. Prod. 1996, 68, 1–423.
(b) Bell, N.; Hsu, L.; Jacob, D. J.; Schultz, M. G.; Blake, D. R.; Butler,
J. H.; King, D. B.; Lobert, J. M.; Maier-Reimer, E. J. Geophys. Res.
2002, 107, 4340. (c) Campagnuolo, C.; Fattorusso, E.; Taglialatela-
Scafati, O. Eur. J. Org. Chem. 2003, 2, 284–287. (d) Campagnuolo, C.;
Fattorusso, E.; Taglialatela-Scafati, O. Eur. J. Org. Chem. 2004, 15,
3227–3232. (e) French, A. N.; Bissmire, S.; Wirth, T. Chem. Soc. Rev.
2004, 33, 354–362.
(10) (a) Chen, Z.-M.; Zhang, Q.-W.; Chen, Z.-H.; Li, H.; Tu, Y.-Q.;
Zhang, F.-M.; Tian, J.-M. J. Am. Chem. Soc. 2011, 133, 8818–8821. (b)
Li, H.; Zhang, F.-M.; Tu, Y.-Q.; Zhang, Q.-W.; Chen, Z.-M.; Chen,
Z.-H.; Li, J. Chem. Sci. 2011, 2, 1839–1841.
(11) Wang, M.; Wang, B. M.; Shi, L.; Tu, Y. Q.; Fan, C.-A.; Wang,
S. H.; Hu, X. D.; Zhang, S. Y. Chem. Commun. 2005, 5580–5582.
ꢀ ꢀ
(12) Romanov-Michailidis, F.; Guenee, L.; Alexakis, A. Angew.
Chem., Int. Ed. 2013, 52, 9266–9270.
(13) Neverov, A. A.; Brown, R. S. J. Org. Chem. 1998, 63, 5977–5982.
(9) Wang, B. M.; Song, L.; Fan, C. A.; Tu, Y. Q.; Chen, W. M. Synlett
2003, 10, 1497–1499.
Org. Lett., Vol. 15, No. 22, 2013
5891