Organic Letters
Letter
3726−3737. (b) Spadoni, G.; Bedini, A.; Lucarini, S.; Mari, M.;
Caignard, D.-H.; Boutin, J. A.; Delagrange, P.; Lucini, V.; Scaglione,
F.; Lodola, A.; Zanardi, F.; Pala, D.; Mor, M.; Rivara, S. J. Med. Chem.
2015, 58, 7512−7525. (c) Bender, A. M.; Griggs, N. W.; Anand, J. P.;
Traynor, J. R.; Jutkiewicz, E. M.; Mosberg, H. I. ACS Chem. Neurosci.
2015, 6, 1428−1435.
(9) (a) Nagata, N.; Furuya, K.; Oguro, N.; Nishiyama, D.; Kawai, K.;
Yamamoto, N.; Ohyabu, Y.; Satsukawa, M.; Miyakawa, M.
ChemMedChem 2014, 9, 197−206. (b) Nagata, N.; Miyakawa, M.;
Amano, S.; Furuya, K.; Yamamoto, N.; Inoguchi, K. Bioorg. Med.
Chem. Lett. 2011, 21, 1744−1747.
(10) (a) Hudson, A. R.; Higuchi, R. I.; Roach, S. L.; Adams, M. E.;
Vassar, A.; Syka, P. M.; Mais, D. E.; Miner, J. N.; Marschke, K. B.; Zhi,
L. Bioorg. Med. Chem. Lett. 2011, 21, 1697−1700. (b) Roach, S. L.;
Higuchi, R. I.; Adams, M. E.; Liu, Y.; Karanewsky, D. S.; Marschke, K.
B.; Mais, D. E.; Miner, J. N.; Zhi, L. Bioorg. Med. Chem. Lett. 2008, 18,
3504−3508.
(11) (a) Enyedy, I. J.; Powell, N. A.; Caravella, J.; van Vloten, K.;
Chao, J.; Banerjee, D.; Marcotte, D.; Silvian, L.; McKenzie, A.; Hong,
V. S.; Fontenot, J. D. Bioorg. Med. Chem. Lett. 2016, 26, 2459−2463.
(b) Fauber, B. P.; Gobbi, A.; Savy, P.; Burton, B.; Deng, Y.; Everett,
C.; La, H.; Johnson, A. R.; Lockey, P.; Norman, M.; Wong, H. Bioorg.
Med. Chem. Lett. 2015, 25, 4109−4113.
(12) For recent intramolecular approaches for the synthesis of
tetrahydroquinolines, see: (a) Porter, M. R.; Shaker, R. M.; Calcanas,
C.; Topczewski, J. J. J. Am. Chem. Soc. 2018, 140, 1211−1214.
(b) Plietker, B.; Alt, I.; Guttroff, C. Angew. Chem., Int. Ed. 2017, 56,
10582−10586. (c) Li, G.; Nakamura, H. Angew. Chem., Int. Ed. 2016,
55, 6758−6761. (d) Zhao, Y.; Hu, Y.; Wang, H.; Li, X.; Wan, B. J.
Org. Chem. 2016, 81, 4412−4420. (e) Briones, J. F.; Basarab, G. S.
Chem. Commun. 2016, 52, 8541−8544. (f) Zhang, G.; Wang, S.; Ma,
Y.; Kong, W.; Wang, R. Adv. Synth. Catal. 2013, 355, 874−879.
(g) Han, Y.-Y.; Han, W.-Y.; Hou, X.; Zhang, X.-M.; Yuan, W.-C. Org.
Lett. 2012, 14, 4054−4057. (h) Chowdhury, C.; Das, B.; Mukherjee,
S.; Achari, B. J. Org. Chem. 2012, 77, 5108−5119.
Org. Chem. 2018, 2018, 1284−1306. (b) McDonald, R. I.; Liu, G.;
Stahl, S. S. Chem. Rev. 2011, 111, 2981−3019.
(20) For halopalladation-initiated cascade reactions involving a
Pd0/II mechanism, see: (a) Zhang, Z.; Wu, W.; Liao, J.; Li, J.; Jiang, H.
Chem. - Eur. J. 2015, 21, 6708−6712. (b) Huang, L.; Wang, Q.; Wu,
W.; Jiang, H. Adv. Synth. Catal. 2014, 356, 1949−1954. (c) Zhang, Z.;
Ouyang, L.; Wu, W.; Li, J.; Zhang, Z.; Jiang, H. J. Org. Chem. 2014,
79, 10734−10742. (d) Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J.
Chem. Commun. 2009, 5406−5408. (e) Liang, Y.; Tang, S.; Zhang, X.-
D.; Mao, L.-Q.; Xie; Li, J.-H. Org. Lett. 2006, 8, 3017−3020. (f) Ma,
S.; Wu, B.; Jiang, X.; Zhao, S. J. Org. Chem. 2005, 70, 2568−2575.
(g) Ma, S.; Wu, B.; Zhao, S. Org. Lett. 2003, 5, 4429−4432. (h) Lu,
X.; Zhu, G.; Wang, Z. Synlett 1998, 1998, 115−121. (i) Ji, J.; Lu, X.
Tetrahedron 1994, 50, 9067−9078. (j) Ma, S.; Lu, X. J. Org. Chem.
1993, 58, 1245−1250.
(21) For halopalladation-initiated cascade reactions involving a
PdII/IV mechanism, see: (a) Takenaka, K.; Hashimoto, S.; Takizawa,
S.; Sasai, H. Adv. Synth. Catal. 2011, 353, 1067−1070. (b) Savitha, G.;
Felix, K.; Perumal, P. T. Synlett 2009, 2009, 2079−2082. (c) Yin, G.;
Liu, G. Angew. Chem., Int. Ed. 2008, 47, 5442−5445. (d) Manzoni, M.
R.; Zabawa, T. P.; Kasi, D.; Chemler, S. R. Organometallics 2004, 23,
5618−5621.
(22) When the manuscript was in preparation a related approach
was published for the generation of monochlorochromane derivatives:
Shukla, R. K.; Pal, K.; Volla, C. M. R. Chem. - Asian J. 2018, 13,
2435−2439.
(23) (a) Denmark, S. E.; Carson, N. Org. Lett. 2015, 17, 5728−5731.
(b) McCall, A. S.; Wang, H.; Desper, J. M.; Kraft, S. J. Am. Chem. Soc.
2011, 133, 1832−1848. (c) Hamed, O.; Henry, P. M. Organometallics
1998, 17, 5184−5189. (d) Henry, P. M. J. Org. Chem. 1974, 39,
3871−3874.
(13) For selected recent aminopalladation-initiated cascade reac-
tions, see: (a) Hu, Y.; Xie, Y.; Shen, Z.; Huang, H. Angew. Chem., Int.
Ed. 2017, 56, 2473−2477. (b) Kundu, P.; Mondal, A.; Das, B.;
Chowdhury, C. Adv. Synth. Catal. 2015, 357, 3737−3752. (c) Xia, G.;
Han, X.; Lu, X. Org. Lett. 2014, 16, 2058−2061. (d) Yao, B.; Wang,
Q.; Zhu, J. Angew. Chem., Int. Ed. 2013, 52, 12992−12996. (e) Qiu,
G.; Chen, C.; Yao, L.; Wu, J. Adv. Synth. Catal. 2013, 355, 1579−
1584. (f) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Iazzetti,
A.; Marinelli, F. Org. Biomol. Chem. 2013, 11, 545−548.
(14) For selected recent oxypalladation-initiated cascade reactions,
see: (a) Vinoth, P.; Nagarajan, S.; Maheswari, C. U.; Sudalai, A.; Pace,
V.; Sridharan, V. Org. Lett. 2016, 18, 3442−3445. (b) Zheng, J.; Li, Z.;
Wu, W.; Jiang, H. Org. Lett. 2016, 18, 6232−6235. (c) Li, J.; Zhu, Z.;
Yang, S.; Zhang, Z.; Wu, W.; Jiang, H. J. Org. Chem. 2015, 80, 3870−
3879. (d) Tian, P.-P.; Cai, S.-H.; Liang, Q.-J.; Zhou, X.-Y.; Xu, Y.-H.;
Loh, T.-P. Org. Lett. 2015, 17, 1636−1639.
́
(15) (a) Vinoth, P.; Vivekanand, T.; Suryavanshi, P. A.; Menendez,
J. C.; Sasai, H.; Sridharan, V. Org. Biomol. Chem. 2015, 13, 5175−
5181. (b) Zhou, F.; Han, X.; Lu, X. J. Org. Chem. 2011, 76, 1491−
1494. (c) Wang, Z.; Lu, X. J. Org. Chem. 1996, 61, 2254−2255.
(16) For general reports of halopalladation-initiated cascade
reactions, see: (a) Derosa, J.; Cantu, A. L.; Boulous, M. N.;
O’Duill, M. L.; Turnbull, J. L.; Liu, Z.; De La Torre, D. M.; Engle,
K. M. J. Am. Chem. Soc. 2017, 139, 5183−5193. (b) Huang, X.-C.;
Wang, F.; Liang, Y.; Li, J.-H. Org. Lett. 2009, 11, 1139−1142.
(c) Dupont, J.; Basso, N. R.; Meneghetti, M. R.; Konrath, R. A.
Organometallics 1997, 16, 2386−2391.
(17) Feng, C.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 17710−
17712.
(18) Shen, K.; Han, X.; Xia, G.; Lu, X. Org. Chem. Front. 2015, 2,
145−149.
(19) For representative reviews on nucleopalladation-triggered
cascade reactions, see: (a) Li, J.; Yang, S.; Wu, W.; Jiang, H. Eur. J.
E
Org. Lett. XXXX, XXX, XXX−XXX