ChemComm
Communication
Angew. Chem., Int. Ed., 2012, 51, 5802–5808; (o) P. Gallezot, Chem.
Soc. Rev., 2012, 41, 1538–1558; (p) J. C. Serrano-Ruiz, A. Pineda,
A. M. Balu, R. Luque, J. M. Campelo, A. A. Romero and J. M. Ramos-
´
Fernandez, Catal. Today, 2012, 195, 162–168; (q) F. W. Lichtenthaler
and S. Mondel, Pure Appl. Chem., 1997, 69, 1853–1866;
(r) G. W. Huber, J. N. Chheda, C. J. Barrett and J. A. Dumesic,
Science, 2005, 308, 1446–1450; (s) P. Gallezot, Catal. Today, 2007,
121, 76–91; (t) H. Zhao, J. E. Holladay, H. Brown and Z. C. Zhang,
Science, 2007, 316, 1597–1600; (u) G. Yong, Y. Zhang and J. Y. Ying,
Angew. Chem., Int. Ed., 2008, 47, 9345–9348; (v) J. B. Binder and
R. T. Raines, J. Am. Chem. Soc., 2009, 131, 1979–1985;
(w) T. Thananatthanachon and T. B. Rauchfuss, Angew. Chem., Int.
Ed., 2010, 49, 6616–6618; (x) J. Q. Bond, D. M. Alonso, D. Wang,
R. M. West and J. A. Dumesic, Science, 2010, 327, 1110–1114;
(y) J. P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clarke
and H. Gosselink, Angew. Chem., Int. Ed., 2010, 49, 4479–4483.
2 (a) W. F. Stephen, US Pat., 5608105, 1997; (b) M. G. Viswas and
A. H. Milford, US Pat., 5859263, 1999; (c) A. F. William and
E. C. John, US Pat., 6054611, 2000.
3 (a) H. Heeres, R. Handana, D. Chunai, C. Borromeus Rasrendra,
B. Girisuta and H. Jan Heeres, Green Chem., 2009, 11, 1247–1255;
(b) L. Deng, Y. Zhao, J. Li, Y. Fu, B. Liao and Q. X. Guo,
ChemSusChem, 2010, 3, 1172–1175; (c) J. C. Serrano-Ruiz, D. Wang
and J. A. Dumesic, Green Chem., 2010, 12, 574–577; (d) X. L. Du,
Q. Y. Bi, Y. M. Liu, Y. Cao and K. N. Fan, ChemSusChem, 2011, 4,
1838–1843; (e) A. M. Hengne, N. S. Biradar and C. V. Rode, Catal.
Lett., 2012, 142, 779–787; ( f ) S. G. Wettstein, J. Q. Bond,
D. M. Alonso, H. N. Pham, A. K. Datye and J. A. Dumesic, Appl.
Scheme 3 Proposed mechanism for iridium-catalysed RA of LA.
our previous studies on RA,10e,11 we believe that an iminium
intermediate, generated in situ under the acidic conditions, is
reduced by an iridium hydride. To gain insight into the cyclisation
step, we isolated and characterised the RA product 3 (R = PMP). Full
conversion of 3 to 2a was observed under the standard conditions in
1 h, but without the iridium catalyst. In fact, when running the NMR
of 3 in CDCl3, spontaneous cyclisation happened (Scheme S2, ESI†),
indicating that the iridicycle catalyst is not required for this step.
In conclusion, the first and a highly efficient transfer hydro-
genation system for RA of LA has been developed, which uses
formic acid as the hydrogen source under aqueous conditions,
allowing transformation of LA into valuable pyrrolidinones
under mild conditions. The system is also applicable to
5-oxohexanoic acid to produce six membered heterocycles. This
mild and green system provides a practical means for converting
biomass-derived chemicals into value-added products.
´
Catal., B, 2012, 117–118, 321–329; (g) H. Mehdi, V. Fabos, R. Tuba,
´
A. Bodor, L. T. Mika and I. T. Horvath, Top. Catal., 2008, 48, 49–54;
(h) L. Deng, J. Li, D. M. Lai, Y. Fu and Q. X. Guo, Angew. Chem., Int.
Ed., 2009, 48, 6529–6532; (i) F. M. A. Geilen, B. Engendahl,
A. Harwardt, W. Marquardt, J. Klankermayer and W. Leitner, Angew.
Chem., Int. Ed., 2010, 49, 5510–5514; ( j) D. Kopetzki and
M. Antonietti, Green Chem., 2010, 12, 656–660; (k) F. M. A. Geilen,
¨
B. Engendahl, M. Holscher, J. Klankermayer and W. Leitner, J. Am.
Chem. Soc., 2011, 133, 14349–14358.
4 (a) L. E. Manzer, US Pat., 6743819, 2004; (b) L. E. Manzer, US Pat.,
6841520, 2005; (c) X. L. Du, L. He, S. Zhao, Y. M. Liu, Y. Cao, H. Y. He
and K. N. Fan, Angew. Chem., Int. Ed., 2011, 50, 7815–7819;
(d) Y. B. Huang, J. J. Dai, X. J. Deng, Y. C. Qu, Q. X. Guo and
Y. Fu, ChemSusChem, 2011, 4, 1578–1581; (e) L. R. Crook,
B. A. Jansen, K. E. Spencer and D. H. Watson, GB Pat., 1036694,
1996; ( f ) W. L. Shilling, US Pat., 3235562, 1996; (g) L. E. Manzer and
F. E. Herkes, US Pat., 2004192933, 2003; (h) L. E. Manzer, WO Pat.,
2004084633, 2004.
5 (a) M. Wills, M. Palmer, A. Smith, J. Kenny and T. Walsgrove,
Molecules, 2000, 5, 4–18; (b) S. Gladiali and E. Alberico, Chem. Soc.
Rev., 2006, 35, 226–236; (c) T. Ikariya and A. J. Blacker, Acc. Chem.
Res., 2007, 40, 1300–1308; (d) X. F. Wu and J. L. Xiao, Chem.
Commun., 2007, 2449–2466; (e) C. Wang, X. F. Wu and J. L. Xiao,
Chem.–Asian J., 2008, 3, 1750–1770.
We are grateful for the financial support of the National Science
Foundation of China (21103102), Program for Changjiang Scholars
and Innovative Research Team in University (IRT 1070), the Cheung
Kong Scholar Programme, the Fundamental Research Funds for the
Central Universities (GK200902009) and Distinguished Doctoral
Research Found from Shaanxi Normal University (S2011YB02).
6 T. Thananatthanachon and T. B. Rauchfuss, ChemSusChem, 2010, 3,
1139–1141.
7 C. Wang, A. Pettman, J. Bacsa and J. L. Xiao, Angew. Chem., Int. Ed.,
2010, 49, 7548–7552.
References
1 (a) J. R. Rostrup-Nielsen, Science, 2005, 308, 1421–1422; (b) G. W.
Huber, S. Iborra and A. Corma, Chem. Rev., 2006, 106, 4044–4098;
(c) M. Schlaf, Dalton Trans., 2006, 4645–4653; (d) J. N. Chheda,
G. W. Huber and J. A. Dumesic, Angew. Chem., Int. Ed., 2007, 46,
7164–7183; (e) A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007,
107, 2411–2502; ( f ) L. D. Schmidt and P. J. Dauenhauer, Nature,
8 (a) Q. Lei, Y. W. Wei, D. Talwar, C. Wang, D. Xue and J. L. Xiao,
Chem.–Eur. J., 2013, 19, 4021–4029; (b) Y. W. Wei, D. Xue, Q. Lei,
C. Wang and J. L. Xiao, Green Chem., 2013, 15, 629–634.
9 (a) T. Dwars, E. Paetzold and G. Oehme, Angew. Chem., Int. Ed., 2005,
44, 7174–7199; (b) C. J. Li, Chem. Rev., 2005, 105, 3095–3166;
(c) A. Chanda and V. V. Fokin, Chem. Rev., 2009, 109, 725–748.
2007, 447, 914–915; (g) P. Gallezot, ChemSusChem, 2008, 1, 734–737; 10 (a) S. Ogo, T. Abura and Y. Watanabe, Organometallics, 2002, 21,
(h) J. J. Bozell, Science, 2010, 329, 522–523; (i) J. J. Bozell and
G. R. Petersen, Green Chem., 2010, 12, 539–554; ( j) U. Biermann,
2964–2969; (b) S. Ogo, K. Uehara, T. Abura and S. Fukuzumi, J. Am.
Chem. Soc., 2004, 126, 3020–3021; (c) X. F. Wu, X. G. Li, F. King and
J. L. Xiao, Angew. Chem., Int. Ed., 2005, 44, 3407–3411; (d) Y. Himeda,
N. Onozawa-Komatsuzaki, S. Miyazawa, H. Sugihara, T. Hirose and
K. Kasuga, Chem.–Eur. J., 2008, 14, 11076–11081; (e) C. Wang,
C. Q. Li, X. F. Wu, A. Pettman and J. L. Xiao, Angew. Chem., Int.
Ed., 2009, 48, 6524–6528.
¨
U. Bornscheuer, M. A. R. Meier, J. O. Metzger and H. J. Schafer,
Angew. Chem., Int. Ed., 2011, 50, 3854–3871; (k) D. J. Braden,
C. A. Henao, J. Heltzel, C. C. Maravelias and J. A. Dumesic, Green
Chem., 2011, 13, 1755–1765; (l) A. A. Rosatella, S. P. Simeonov,
R. F. M. Frade and C. A. M. Afonso, Green Chem., 2011, 13, 754–793;
(m) S. Van de Vyver, J. Geboers, P. A. Jacobs and B. F. Sels, 11 C. Wang, H. Y. T. Chen, J. Bacsa, C. R. A. Catlow and J. L. Xiao,
ChemCatChem, 2011, 3, 82–94; (n) S. Chikkali and S. Mecking,
Dalton Trans., 2013, 42, 935–940.
c
5410 Chem. Commun., 2013, 49, 5408--5410
This journal is The Royal Society of Chemistry 2013