Organic Letters
Letter
Escudero-Adan
́
, E. C.; Melchiorre, P. Angew. Chem., Int. Ed. 2015, 54,
steric effect when forming the key intermediate (see II in Scheme
1).
1485. (d)Sun, X.;Wang, W.;Li,Y.;Ma, J.;Yu, S. Org.Lett. 2016,18, 4638.
(e) Beatty, J. W.; Douglas, J. J.; Miller, R.; McAtee, R. C.; Cole, K. P.;
Stephenson, C. R. J. Chem. 2016, 1, 456. (f) For a recent review, see:
Lima, C. G. S.; Lima, T. M.; Duarte, M.; Jurberg, I. D.; Paixao, M. W. ACS
Catal. 2016, 6, 1389. (g)Deng, Y.; Wei, X.-J.;Wang, H.; Sun, Y.;Noel, T.;
Wang, X. Angew. Chem., Int. Ed. 2017, 56, 832.
(4) Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am.
Chem. Soc. 2015, 137, 6120.
In conclusion, we developed an autonomous visible-light-
induced method for the synthesis of N-H carbazoles from easily
available 2,2′-diaminobiaryls through the in situ formation of a
visible-light-absorbing photosensitizing intermediate, benzocin-
noline N-imide. Combined experimental and theoretical studies
confirmed that in the presence of visible light benzocinnoline N-
imide activates triplet molecular oxygen to generate singlet
oxygen that plays akey role incarbazole synthesis by reacting with
the dibenzo[d,f ][1,2,3]triazepine intermediate. This simple
method has several advantages: (1) external PS-free protocol
utilizing natural resources such as visible light and molecular
oxygen, (2) direct synthesis of free N-H carbazoles without N-
protection/deprotection steps, (3) broad substrate scope with a
high functional group tolerance under mild reaction conditions,
and (4) no regioselectivity problem.
̃
̈
(5) (a) Sahoo, B.; Hopkinson, M. N.; Glorius, F. Angew. Chem., Int. Ed.
2015, 54, 15545. (b) Kim, I.; Min, M.; Kang, D.; Kim, K.; Hong, S. Org.
Lett. 2017, 19, 1394.
(6) For visible-light-induced synthesis of carbazoles, see: (a) Hernan-
dez-Perez, A. C.; Collins, S. K. Angew. Chem., Int. Ed. 2013, 52, 12696.
(b) Yuan, Z.-G.; Wang, Q.; Zheng, A.; Zhang, K.; Lu, L.-Q.; Tang, Z.;
Xiao, W.-J. Chem. Commun. 2016, 52, 5128. Also see ref 2a.
(7) For examples of synthetic accessibility of 2,2′-diamino-1,1′-biaryls,
see: (a) Lim, Y. − K.; Jung, J. − W.; Lee, H.; Cho, C. − G. J. Org. Chem.
2004, 69, 5778. (b) Schulz, L.; Enders, M.; Elsler, B.; Schollmeyer, D.;
Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017,
(8) Previously, the Yamato group utilized 2,2′-diamino-1,1′-biaryls for
the synthesis of carbazoles in the presence of perfluorinated sulfonic acid
resin (50 wt % Nafion-H) at high temperature (200 °C): Yamato, T.;
Hideshima, C.; Suehiro, K.; Tashiro, M.; Prakash, G. K. S.; Olah, G. A. J.
Org. Chem. 1991, 56, 6248.
(9) For examples of books and reviews on carbazoles, see:
(a) Chakraborty, D. P.; Roy, S. Progress in the Chemistry of Organic
Natural Products; Herz, W., Kirby, G. W., Steglich, W., Tamm, Ch., Eds.;
Springer-Verlag: New York, 1991; Vol. 57, p 72. (b) Schmidt, A. W.;
Reddy, K. R.; Knolker, H.-J. Chem. Rev. 2012, 112, 3193. (c) Roy, J.; Jana,
A. K.; Mal, D. Tetrahedron 2012, 68, 6099.
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
DFT calculation details, additional experimental results,
experimental details, analytical data of the synthesized
compounds, and NMR spectra (PDF)
AUTHOR INFORMATION
Corresponding Authors
̈
■
(10) For examples to show application of carbazole derivatives in novel
functional materials, see: (a) Grazulevicius, J. V.; Strohriegl, P.;
Pielichowski, J.; Pielichowski, K. Prog. Polym. Sci. 2003, 28, 1297.
(b) Brunner, K.; van Dijken, A.; Borner, H.; Bastiaansen, J. J. A. M.;
̈
ORCID
Kiggen, N. M. M.; Langeveld, B. M. W. J. Am. Chem. Soc. 2004, 126, 6035.
(c) Liu, Z.; Guan, M.; Bian, Z.; Nie, D.; Gong, Z.; Li, Z.; Huang, C. Adv.
Funct. Mater. 2006, 16, 1441.
Notes
(11) (a) Gait, S. F.; Rees, C. W.; Storr, R. C. J. Chem. Soc. D 1971, 1545.
(b) Gait, S. F.; Peek, M. E.; Rees, C. W.; Storr, R. C. J. Chem. Soc., Chem.
Commun. 1972, 982.(c)Gait, S.F.;Peek, M. E.;Rees, C. W.;Storr, R.C. J.
Chem. Soc., Perkin Trans. 1 1974, 1248. (d) Gait, S. F.; Peek, M. E.; Rees,
C. W.; Storr, R. S. J. Chem. Soc., Perkin Trans. 1 1975, 19.
(12) For examples of reviews on singlet oxygen, see: (a) DeRosa, M. C.;
Crutchley, R. J. Coord. Chem. Rev. 2002, 233−234, 351. (b) Ghogare, A.
A.; Greer, A. Chem. Rev. 2016, 116, 9994.
(13) For the details of DFT calculations, see Figures S1−S4 and Tables
S2−S4 in the SI. The DFT calculation was also performed for
intermediate I, but the spectrum of I showed weak absorption in the
visible region, which is negligible; see Figure S2.
(14) Along with N-H carbazole, 24% of benzo[c]cinnoline was also
formed from III through N−N bond cleavage by photolysis.
(15) (a) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473.
(b) Mehrabi-Kalajahi, S. S.; Hajimohammadi, M.; Safari, N. J. Iran. Chem.
Soc. 2016, 13, 1069.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Thisworkwas supported bytheNational Research Foundation of
Korea (NRF-2014R1A1A1A05003274, 2014R1A5A1011165,
and 2012M3A7B4049657).
REFERENCES
■
(1) For some recent reviews on visible-light-induced photocatalysis,
see: (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40,
102. (c) Prier, C. K.;Rankic, D. A.;MacMillan, D. W. C. Chem. Rev. 2013,
113,5322. (d)Koike, T.;Akita, M. Top.Catal. 2014,57,967.(e)Romero,
N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. (f) Cambie,
́
D.;
́
(16) Rudshteyn, B.; Castillo, A.; Ghogare, A. A.; Liebman, J. F.; Greer,
A. Photochem. Photobiol. 2014, 90, 431.
Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noel, T. Chem. Rev. 2016,
̈
116, 10276.
(17) II-B cannot absorb light in the visible region, which excludes its
roleasaPSforthisreaction;see:Buxton, P.C.;Heaney, H.;Mason,K. G.;
Sketchley, J. M. J. Chem. Soc., Perkin Trans. 1 1974, 2695.
(18) Kim, S. M.; Byeon, S. Y.; Hwang, S.-H.; Lee, J. Y. Chem. Commun.
2015, 51, 10672.
(19) (a) Mazu, T. K.; Etukala, J. R.; Jacob, M. R.; Khan, S. I.; Walker, L.
A.;Ablordeppey, S.Y. Eur.J. Med.Chem. 2011,46,2378. (b)Im, Y.;Lee, J.
Y. Synth. Met. 2015, 209, 24.
(2) Forexamples ofourrecent workson visiblelightphotocatalysis, see:
(a) Choi, S.; Chatterjee, T.; Choi, W. J.; You, Y.; Cho, E. J. ACS Catal.
2015,5, 4796. (b)Chatterjee, T.;Choi, M.G.;Kim, J.;Chang, S.-K.;Cho,
E. J. Chem. Commun. 2016, 52, 4203. (c) Choi, Y.; Yu, C.; Kim, J. S.; Cho,
E. J. Org. Lett. 2016, 18, 3246. (d) Chatterjee, T.; Iqbal, N.; You, Y.; Cho,
E. J. Acc. Chem. Res. 2016, 49, 2284.
(3) For examples of visible-light-induced EDA chemistry and their
application in synthetic organic chemistry, see: (a) Rosokha, S. V.; Kochi,
J. K. Acc. Chem. Res. 2008, 41, 641. (b) Davies, J.; Booth, S. G.; Essafi, S.;
Dryfe, R. A. W.; Leonori, D. Angew. Chem., Int. Ed. 2015, 54, 14017.
(c) Kandukuri, S. R.; Bahamonde, A.; Chatterjee, I.; Jurberg, I. D.;
D
Org. Lett. XXXX, XXX, XXX−XXX