5756
M. Hofer, C. Nevado / Tetrahedron 69 (2013) 5751e5757
7.21 (s, 2H), 2.59 (spt, J¼6.8 Hz, 4H), 1.32 (d, J¼6.8 Hz, 12H), 1.20 (d,
150 ꢀC for 22 h. The analysis of the reaction products were per-
formed by 1H, 31P and 19F NMR. The product ratios were determined
by integration of the 1H and 19F NMR signals of the crude NMR
spectrum. For isolation, the solvent was evaporated under reduced
pressure and the crude was purified by column chromatography
(hexane/CH2Cl2 1:1) to give compounds 11, 12, 13, and 14.
J¼7.0 Hz, 12H); 13C NMR (125 MHz, CD2Cl2):
¼191.1 (s), 148.9
d
(ddquint, J¼226.0, 25.5, 3.5 Hz), 146.0 (s), 138.0 (dm, J¼245.0 Hz),
136.7 (dm, J¼250.0 Hz), 134.2 (s), 132.8 (t, J¼59.9 Hz), 130.4 (s),
124.0 (s), 123.3 (s), 28.8 (s), 24.1 (s), 23.7 (s); 19F NMR (376 MHz,
CD2Cl2):
d
¼ꢁ(116.12e116.44) (m), ꢁ161.80 (t, J¼19.8 Hz),
ꢁ(164.31e164.73) (m); MS (EI): m/z¼752 ([M]þ, 15); EI-HRMS
Calcd for C33H36AuF5N2: 752.2464, found: 752.2471.
4.6. Characterization of cross-coupling products 11e14
4.6.1. 2,3,4,5,6-Pentafluo-20,40,60-trimethoxybiphenyl (11). The com-
4.3. Preparation of areneegold(III) complexes 5, 7
pound was isolated as a white solid. 1H NMR (400 MHz, CD2Cl2):
¼6.20 (s, 2H), 3.82 (s, 3H), 3.71 (s, 6H). 13C NMR (125 MHz, CD2Cl2):
¼163.1 (s), 159.0 (s), 144.9 (dm, J¼245.0 Hz), 140.2 (dm,
4.3.1. cis-Dichloro(pentafluorobenzene)(tri-tert-butylphosphine)
gold(III) (5). To a mixture of pentafluorophenyl(tri-tert-butylphos-
phine)gold(I) (16.9 mg, 0.03 mmol) and iodobenzeneedichloride
(9.0 mg, 0.033 mmol), tetrachloromethane (1.9 mL) was added. The
reaction mixture was stirred at room temperature for 1 h. The sol-
vent was evaporated under reduced pressure to w0.2 mL and after
addition of hexane the product precipitated. The product was sep-
arated on a filter paper to give 8 as a white solid. Yield: 78% (14.8 mg,
d
d
J¼250.0 Hz), 137.4 (dm, J¼249.0 Hz), 109.3 (t, J¼19.8 Hz), 95.8 (s),
90.6 (s), 55.9 (s), 55.5 (s). 19F NMR (376 MHz, CD2Cl2):
d
¼ꢁ139.61
(dd, J¼23.5, 7.3 Hz), ꢁ158.18 (t, J¼20.5 Hz), ꢁ(164.26e166.03) (m).
MS (EI): m/z¼334 ([M]þ, 100).
4.6.2. 2,3,4,5,6-Pentafluo-20,30,50-trimethoxybiphenyl (12). The com-
0.023 mmol). 1H NMR (400 MHz, CD2Cl2):
27H); 13C NMR (125 MHz, CD2Cl2):
¼144.8 (dm, J¼235.0 Hz), 140.3
d¼1.62 (d, J¼15.0 Hz,
pound was isolated as a white solid. 1H NMR (500 MHz, CD2Cl2):
¼6.78 (s, 1H), 6.70 (s, 1H), 3.95 (s, 3H), 3.83 (s, 3H), 3.82 (s, 3H); 13
C
d
d
(dm, J¼250.0 Hz), 138.0 (dm, J¼255.0 Hz), 105.8 (t, J¼37.0 Hz),
NMR (125 MHz, CD2Cl2):
d
¼151.9 (s), 151.4 (s), 144.6 (dm,
45.8 (d, J¼10.0 Hz), 33.2 (s); 31P NMR (162 MHz, CD2Cl2):
¼106.88
d
J¼247.0 Hz), 143.2 (s), 140.3 (dm, J¼253.0 Hz), 137.6 (dm,
(s); 19F NMR (376 MHz, CD2Cl2):
d
¼ꢁ(119.29e119.74) (m), ꢁ156.10
J¼251.0 Hz), 115.1 (s), 112.7 (td, J¼19.2, 3.8 Hz), 105.5 (s), 97.6 (s),
56.6 (s), 56.4 (s), 56.0 (s); 19F NMR (376 MHz, CD2Cl2):
d¼ꢁ140.98
(t, J¼19.8 Hz), ꢁ(161.01e161.40) (m). ESI-HRMS Calcd for
C18H27AuCl2F5PNa: 659.0711, found: 659.0705.
(dd, J¼23.0, 7.5 Hz), ꢁ157.59 (t, J¼20.3 Hz), ꢁ(164.04e164.54) (m);
MS (EI): m/z¼334 ([M]þ, 100).
4.3.2. trans-Dichloro[N,N-bis(2,6-di-iso-propylphenyl)imidazol-
4.6.3. 1-Methyl-3-(pentafluorophenyl)-indole (13).19 The compound
2-yl](pentafluorophenyl)-gold(III) (7). To
a mixture of [N,N-bis
was isolated as a white solid. 1H NMR (400 MHz, CD2Cl2):
d¼3.84 (s,
(2,6-diisopropylphenyl)imidazol-2-yl](pentafluorophenyl)gold(I)
(301 mg, 0.40 mmol) and iodobenzeneedichloride (157 mg,
0.57 mmol), tetrachloromethane (20 mL) was added. The reaction
mixture was heated at 93 ꢀC for 3 h. The solvent was evaporated
under reduced pressure and the crude was purified by column
chromatography (hexane/CH2Cl2 4:1) to give 10 as a white solid.
3 H) 7.12e7.19 (m, 1H) 7.27 (td, J¼7.67, 1.04 Hz, 1H) 7.30 (s, 1H) 7.39
(d, J¼8.28 Hz, 1H) 7.42e7.49 (m, 1H). 19F NMR (376 MHz, CD2Cl2):
d
¼ꢁ141.28 (dd, J¼23.2, 7.5 Hz), ꢁ159.22 (t, J¼20.7 Hz),
ꢁ(163.81e164.07) (m); MS (EI): m/z¼397 ([M]þ, 100).
Yield: 76% (250 mg, 0.30 mmol). 1H NMR (400 MHz, CD2Cl2):
d¼7.55
4.6.4. Decafluorobiphenyl (14).26 The compound was isolated as
a white solid. 19F NMR (376 MHz, CD2Cl2):
d
¼ꢁ(137.87e138.18) (m),
(t, J¼7.8 Hz, 2H), 7.37 (d, J¼7.7 Hz, 4H), 7.33 (s, 2H), 2.86 (spt,
J¼6.8 Hz, 4H), 1.36 (d, J¼6.8 Hz, 12H), 1.11 (d, J¼7.0 Hz, 12H); 13C
ꢁ(150.63e151.12) (m), ꢁ(161.04e161.58) (m). MS (EI): m/z¼334
([M]þ, 100).
NMR (125 MHz, CD2Cl2):
d
¼167.1 (quint, J¼5.5 Hz), 146.1 (s), 145.0
(dm, J¼240.0 Hz), 139.2 (dm, J¼253.0 Hz), 137.2 (dm, J¼253.0 Hz),
132.9 (s), 131.1 (s), 125.6 (s), 124.3 (s), 113.6 (tm, J¼41.0 Hz), 29.0 (s),
Acknowledgements
26.3 (s), 22.2 (s); 19F NMR (376 MHz, CD2Cl2):
d
¼ꢁ(125.69e125.98)
(m), ꢁ159.28 (t, J¼19.8 Hz), ꢁ(162.74e163.18) (m); ESI-HRMS Calcd
We are thankful to the Swiss National Science Foundation, the
European Research Council (ERC Starting grant agreement no. 307948)
for C33H36AuCl2F5N2Na: 845.1739, found: 845.1733.
€
and the Organic Chemistry Institute of the University of Zurich for fi-
4.4. Cross-coupling of areneegold(III) complexes 2, 3, 5, and 7
with 1,3,5-trimethoxybenzene (8), 1,4,5-trimethoxybenzene
(9), and 1-methylimidazole (10)
nancial support. We would like to thank Prof. Anthony Linden for
performing the X-ray crystal structure determination of 5 and 7.27
References and notes
4.4.1. General procedure. To a mixture of areneegold(III) (1 equiv)
and the nucleophile (1.5 equiv), 1,2-dichloroethane (0.05 M) was
added. The reaction mixtures were heated at 150 ꢀC for 22 h. The
1. (a) Constable, E. C.; Sousa, L. R. J. Organomet. Chem. 1992, 427, 125; (b) Bennett,
M. A. D.; Hockless, C. R.; Rae, A. D.; Welling, L. L.; Willis, A. C. Organometallics
2001, 20, 79; (c) Sahoo, A. K.; Nakamura, Y.; Aratani, N.; Kim, K. S.; Noh, S. B.;
Shinokubo, H.; Kim, D.; Osuka, A. Org. Lett. 2006, 8, 4141.
2. Zamora, F.; Amo-Ochoa, P.; Fischer, B.; Schimanski, A.; Lippert, B. Angew. Chem.,
Int. Ed. 1999, 38, 2274.
analysis of the reaction products were performed by 1H, 31P and 19
F
NMR. The product ratios were determined by integration of the 1H
and 19F NMR signals of the crude NMR spectrum. For isolation, the
solvent was evaporated under reduced pressure and the crude was
purified by column chromatography (hexane/CH2Cl2 1:1) to give
compounds 11, 12, 13, and 14.
3. Constable, E. C.; Henney, R. P. G.; Tocher, D. A. J. Chem. Soc., Dalton Trans. 1992,
16, 2467.
4. Kar, A.; Mangu, N.; Kaiser, H. M.; Beller, M.; Tse, M. K. Chem. Commun. 2008, 386;
(b) Kar, A.; Mangu, N.; Kaiser, H. M.; Tse, M. K. J. Organomet. Chem. 2009, 694, 524.
5. (a) Hashmi, A. S. K.; Blanco, M. C.; Fischer, D.; Bats, J. W. Eur. J. Org. Chem. 2006,
1387; (b) Hashmi, A. S. K.; Ramamurthi, T. D.; Rominger, F. J. Organomet. Chem.
2009, 694, 592.
6. (a) Wegner, H. A.; Ahles, S.; Neuburger, M. Chem.dEur. J. 2008, 14, 11310; (b)
Auzias, M. G.; Neuburger, M.; Wegner, H. A. Synlett 2010, 2443; (c) Wegner, H.
A. Chimia 2009, 63, 45.
4.5. Oxidative cross-coupling of [AuI(C6F5)(PPh3)] (1), with
1,3,5-trimethoxybenzene (8), 1,4,5-trimethoxybenzene (9),
and 1-methylimidazole (10)
7. Cui, L.; Zhang, G.; Zhang, L. Bioorg. Med. Chem. Lett. 2009, 19, 3884.
8. Hua, R. M.; Li, M. Tetrahedron Lett. 2009, 50, 1478.
9. For selected examples see: (a) Han, W.; Mayer, P.; Ofial, A. R. Angew. Chem., Int.
Ed. 2011, 50, 2178; (b) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172; (c)
4.5.1. General procedure. To a mixture of areneegold(I) (1 equiv),
the nucleophile (1 equiv), and the oxidant (2 equiv), 1,2-
dichloroethane (0.05 M) was added. The reactions were heated at