ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis of Tetrasubstituted Pyrroles
from Terminal Alkynes and Imines
Yancheng Hu, Chunxiang Wang, Dongping Wang, Fan Wu, and Boshun Wan*
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
Received May 15, 2013
ABSTRACT
n
Tetrasubstituted pyrroles can be obtained via the reaction of terminal alkynes and imines using BuLi as the base in one step with high
chemoselectivity (method 1). Alternatively, the intermediate propargylamines can also react with imines to afford tetrasubstituted pyrroles when
using LiHMDS as the base (method 2), which provides a complementary method to construct the pyrroles with different substituents.
Pyrroles are not only key structural units in numerous
biologically active compounds but also important building
blocks in material chemistry.1 Consequently, their syn-
thetic methods have gained much attention and a lot of
amazing progress has been achieved in the past decades.2
Generally, the construction of the pyrrole ring involves a
multistep process from preformed intermediates, such as
theclassical Knorr, PaalꢀKnorr, and Hantzschreactions.3
Recently, some more efficient and benign approaches,
including using new building blocks4 as well as transition
metal catalyzed5 and multicomponent reactions,1b,6 have
been developed to access multifunctionalized pyrroles.
Recently, we have reported the cyclization of 3-aza-1,5-
enynes into pyrroles via sulfonyl migration.4a As a con-
tinuation of our interest in the synthesis of other 3-aza-1,5-
enynes, we found that the addition of phenyl acetylene 1a
to N-phenyl imine 2a failed to provide the desired propar-
gylamine (Scheme 1, eq 1). In contrast, tetrasubstituted
pyrrole 3a was obtained unexpectedly as the main product
(Scheme 1, eq 2). Considering that terminal alkynes are
commercially available and imines can be easily prepared
(1) (a) Fan, H.; Peng, J. N.; Hamann, M. T.; Hu, J. F. Chem. Rev.
ꢀ
ꢀ
2008, 108, 264. (b) Estevez, V.; Villacampa, M.; Menendez, J. C. Chem.
Soc. Rev. 2010, 39, 4402. (c) Bellina, F.; Rossi, R. Tetrahedron 2006, 62,
7213. (d) Clark, B. R.; Capon, R. J.; Lacey, E.; Tennant, S.; Gill, J. H.
Org. Lett. 2006, 8, 701.
(5) Selected recent examples for the synthesis of pyrroles catalyzed by
Rh(III) and Ru(II), see: (a) Rakshit, S.; Patureau, F. W.; Glorius, F.
J. Am. Chem. Soc. 2010, 132, 9585. (b) Stuart, D. R.; Alsabeh, P.; Kuhn,
M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326. (c) Huestis, M. P.;
Chan, L.; Stuart, D. R.; Fagnou, K. Angew. Chem., Int. Ed. 2011, 50,
1338. (d) Lian, Y.; Huber, T.; Hesp, K. D.; Bergmann, R. G.; Ellmann,
J. A. Angew. Chem., Int. Ed. 2013, 52, 629. (e) Wang, L.; Ackermann, L.
Org. Lett. 2013, 15, 176. (f) Li, B.; Wang, N. C.; Liang, Y. J.; Xu, S. S.;
Wang, B. Q. Org. Lett. 2013, 15, 136. For some other representative
examples on transition metal catalyzed reactions, see: (g) Ngwerume, S.;
Lewis, W.; Camp, J. E. J. Org. Chem. 2013, 78, 920. (h) Michlik, S.;
Kempe, R. Nat. Chem. 2013, 5, 140. (i) Trost, B. M.; Lumb, J.-P.;
Azzarelli, J. M. J. Am. Chem. Soc. 2011, 133, 740. (j) Yamagishi, M.;
Nishigai, K.; Hata, T.; Urabe, H. Org. Lett. 2011, 13, 4873. (k) Ng,
E. P. J.; Wang, Y.-F.; Chiba, S. Synlett 2011, 6, 783. (l) Donohoe, T. J.;
Race, N. J.; Bower, J. F.; Callens, C. K. A. Org. Lett. 2010, 14, 4094. (m)
Shi, Z. Z.; Suri, M.; Glouris, F. Angew. Chem., Int. Ed. 2013, 52, 4892. (n)
Srimani, D.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2013,
52, 4012. (o) Gao, M.; He, C.; Chen, H. Y.; Bai, R. P.; Cheng, B.; Lei,
A. W. Angew. Chem., Int. Ed. 2013, 10.1002/anie.201302604. (p) Liu,
J. Q.; Fang, Z. X.; Zhang, Q.; Liu, Q.; Bi, X. H. Angew. Chem., Int. Ed. 2013,
10.1002/anie.201302024.
(2) (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127. (b)
Joule, J. A.; Mills, K. Heterocyclic Chemistry, 5th ed.; Wiley: 2010. (c)
Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev.
2013, 113, 3084.
(3) (a) Manley, J. M.; Kalman, M. J.; Conway, M. J.; Ball, C. C.;
Havens, J. L.; Vaidyanathan, R. J. J. Org. Chem. 2003, 68, 6447. (b)
Shiner, C. M.; Lash, T. D. Tetrahedron 2005, 61, 11628. (c) Chen, J. X.;
Wu, H. Y.; Zheng, Z. G.; Jin, C.; Zhang, X. X.; Su, W. K. Tetrahedron
Lett. 2006, 47, 5383. (d) Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei,
M. Eur. J. Org. Chem. 2005, 24, 5277. (e) Matiychuk, V. S.; Martyack,
R. L.; Obushak, N. D.; Ostapiuk, Y. V.; Pidlypnyi, N. I. Chem.
Heterocycl. Compd. 2004, 40, 1218.
(4) (a) Xin, X. Y.; Wang, D. P.; Li, X. C.; Wan, B. S. Angew. Chem., Int.
Ed. 2012, 51, 1693. (b) Sai, M.; Yorimitsu, H.; Oshima, K. Angew. Chem.,
Int. Ed. 2011, 50, 3294. (c) Toh, K. K.; Wang, Y.-F.; Ng, E. P. J.; Chiba, S.
J. Am. Chem. Soc. 2011, 133, 13942. (d) Wang, H.-Y.; Mueller, D. S.;
Sachwani, R. M.; Kapadia, R.; Londino, H. N.; Anderson, L. L. J. Org.
Chem. 2011, 76, 3203. (e) Saito, A.; Konishi, T.; Hanzawa, Y. Org. Lett.
2010, 12, 372. (f) Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E. F. Org.
Lett. 2009, 11, 4624. (g) Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11,
5002. (h) Cacchi, S.; Fabrizi, G.; Filisti, E. Org. Lett. 2008, 10, 2629.
r
10.1021/ol401369d
XXXX American Chemical Society