ChemComm
Communication
(h) B.-C. Hong, N. S. Dange, C.-S. Hsu and J.-H. Liao, Org. Lett., 2010,
12, 4812; (i) H. Jiang, B. Gschwend, L. Albrecht and K. A. Jørgensen,
Org. Lett., 2010, 12, 5052; ( j) Z.-Y. Han, H. Xiao, X.-H. Chen and
L.-Z. Gong, J. Am. Chem. Soc., 2009, 131, 9182; (k) Y. Huang, A. M. Walji,
C. H. Larsen and D. W. C. MacMillan, J. Am. Chem. Soc., 2009,
127, 15051; (l) B. Simmons, A. M. Walji and D. W. C. MacMillan,
Angew. Chem., Int. Ed., 2009, 48, 4349; (m) D. Enders, A. Grossmann,
H. Huang and G. Raabe, Eur. J. Org. Chem., 2011, 4298; (n) Z.-Y. Han,
D.-F. Chen, Y.-Y. Wang, R. Guo, P.-S. Wang, C. Wang and L.-Z. Gong,
J. Am. Chem. Soc., 2012, 134, 6532.
3 For selected reviews on organocatalysis, see: (a) in Science of Synthesis:
Asymmetric organocatalysis, ed. B. List and K. Manuoka, Georg Thieme
Verlag KG, Stuttgart, New York, 2012; (b) D. W. C. MacMillan, Nature,
2008, 455, 304.
4 (a) S. P. Lathrop and T. Rovis, J. Am. Chem. Soc., 2009, 131, 13628;
(b) K. E. Ozboya and T. Rovis, Chem. Sci., 2011, 2, 1835.
Scheme 2 Sequential transformations with the DA intermediate.
´
5 Y. Liu, M. Nappi, E. C. Escudero-Adan and P. Melchiorre, Org. Lett.,
2012, 14, 1310.
The corresponding indane derivatives 5k–5n were obtained in
low to good yields and with retained high enantioselectivity. It
should be noted that simple 2,4-hexadienal gave a complex
mixture in the reaction with 3a.
6 C. Ma, Z.-J. Jia, J.-X. Liu, Q.-Q. Zhou, L. Dong and Y.-C. Chen, Angew.
Chem., Int. Ed., 2013, 52, 948.
7 For more studies on trienamine catalysis, see: (a) Z.-J. Jia, H. Jiang,
J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y.-C. Chen and
K. A. Jørgensen, J. Am. Chem. Soc., 2011, 133, 5053; (b) Y. Liu,
M. Nappi, E. Arceo, S. Vera and P. Melchiorre, J. Am. Chem. Soc.,
2011, 133, 15212; (c) K. S. Halskov, T. K. Johansen, R. L. Davis,
M. Steurer, F. Jensen and K. A. Jørgensen, J. Am. Chem. Soc., 2012,
134, 12943; (d) X.-F. Xiong, Q. Zhou, J. Gu, L. Dong, T.-Y. Liu and
Y.-C. Chen, Angew. Chem., Int. Ed., 2012, 51, 4401; (e) Z.-J. Jia,
Q. Zhou, Q.-Q. Zhou, P.-Q. Chen and Y.-C. Chen, Angew. Chem.,
Int. Ed., 2011, 50, 8638; ( f ) H. Jiang, B. Gschwend, Ł. Albrecht,
S. G. Hansen and K. A. Jørgensen, Chem.–Eur. J., 2011, 17, 9032;
(g) Ł. Albrecht, F. C. Acosta, A. Fraile, A. Albrecht, J. Christensen and
K. A. Jørgensen, Angew. Chem., Int. Ed., 2012, 51, 9088; (h) K. Zhu,
H. Huang, W. Wu, Y. Wei and J. Ye, Chem. Commun., 2013, 49, 2157;
(i) A. Dieckmann, M. Breugst and K. N. Houk, J. Am. Chem. Soc.,
2013, 135, 3237; for reviews, see: ( j) J.-L. Li, T.-Y. Liu and Y.-C. Chen,
Acc. Chem. Res., 2012, 45, 1491; (k) E. Arceo and P. Melchiorre,
Angew. Chem., Int. Ed., 2012, 51, 5290; (l) I. Kumar, P. Ramaraju and
N. A. Mir, Org. Biomol. Chem., 2013, 11, 709; (m) H. Jiang, Ł. Albrecht
and K. A. Jørgensen, Chem. Sci., 2013, 4, 2287.
Apart from the cascade NHC-catalysed cross benzoin reaction with
the DA intermediates, a sequential transformation could also be
adopted to produce fused indane compounds with more structural
diversity. As illustrated in Scheme 2, PCC oxidation of the DA cyclo-
adduct from 3-bromo-1-indanone 3a and 2,4-dienal 4a could give a
lactone product 6 with good diastereoselectivity. More importantly,
a tetrahydropyridine derivative 7 with potential use in medicinal
chemistry could be separated as a single diastereomer after a
domino reductive amination–enamine formation process.13
In conclusion, we have presented an amine–NHC cascade
catalytic reaction of 3-bromo-1-indanones and 2,4-dienals,
which involves a multiple base-promoted dehydrobromination,
asymmetric Diels–Alder reaction via trienamine activation and
the NHC-catalysed intramolecular cross benzoin condensation
process. An array of fused indane derivatives with high molecular
complexity and multiple stereogenic centres were efficiently
produced in a single procedure with high stereoselectivity. More-
over, other selected transformations with the Diels–Alder cyclo-
adducts leading to more diverse and complex scaffolds further
illustrate the synthetic usefulness of this methodology.
8 For selected examples, see: (a) N. Z. Burns, I. N. Krylova, R. N. Hannoush
and P. S. Baran, J. Am. Chem. Soc., 2009, 131, 9172; (b) M. Matveenko,
G. Liang, E. M. W. Lauterwasser, E. Zubıa and D. Trauner, J. Am. Chem.
´
Soc., 2012, 134, 9291; (c) O. Kinzel, D. Fattori, E. Muraglia, P. Gallinari,
M. C. Nardi, C. Paolini, G. Roscilli, C. Toniatti, O. G. Paz, R. Laufer,
A. Lahm, A. Tramontano, R. Cortese, R. De Francesco, G. Ciliberto and
U. Koch, J. Med. Chem., 2006, 49, 5404; (d) M.-L. Han, H. Zhang,
S.-P. Yang and J.-M. Yue, Org. Lett., 2012, 14, 486; (e) K. Schneider,
G. Nicholson, M. Stroebele, S. Baur, J. Niehaus, H.-P. Fiedler and
R. D. Suessmuth, J. Antibiot., 2006, 59, 105.
9 (a) H. House and W. C. McDaniel, J. Org. Chem., 1977, 42, 2155;
(b) H. H. Szmant and R. Nanjundiah, J. Org. Chem., 1978, 43, 1835;
(c) A. Coop, K. Grivas, S. Husbands, J. W. Lewis and J. Porter,
Tetrahedron Lett., 1995, 36, 1689; (d) L. Minuti, A. Taticchi,
E. Gacs-Baitz and A. Marrocchi, Tetrahedron, 1995, 51, 8953;
(e) L. Minuti, A. Taticchi, E. Gacs-Baitz and A. Marrocchi, Tetra-
hedron, 1998, 54, 10891; ( f ) T. Kumamoto, N. Tabe, K. Yamaguchi
and T. Ishikawa, Tetrahedron Lett., 2000, 41, 5693; (g) A. Marrocchi,
L. Minuti, A. Taticchi and H. W. Scheeren, Tetrahedron, 2001,
57, 4959; (h) G. Mehta, Y. C. S. Kumar and M. Das, Tetrahedron
Lett., 2011, 52, 3505.
We are grateful for the financial support from the National
Natural Science Foundation of China (21125206 and 21021001)
and Third Military Medical University (2012XZH06).
Notes and references
1 For selected reviews, see: (a) N. T. Patil, V. S. Shinde and B. Gajula,
Org. Biomol. Chem., 2012, 10, 211; (b) D. T. Cohen and K. A. Scheidt,
Chem. Sci., 2012, 3, 53; (c) R. C. Wende and P. R. Schreiner, Green
Chem., 2012, 14, 1821; (d) A. Crossmann and D. Enders, Angew.
Chem., Int. Ed., 2012, 51, 314; (e) A. E. Allen and D. W. C. MacMillan,
Chem. Sci., 2012, 3, 633; ( f ) L. M. Ambrosini and T. H. Lambert,
ChemCatChem, 2010, 2, 1373; (g) J. Zhou, Chem.–Asian J., 2010,
5, 422; (h) C. Zhong and X. Shi, Eur. J. Org. Chem., 2010, 2999;
(i) C. Grondal, M. Jeanty and D. Enders, Nat. Chem., 2010, 2, 167.
2 For selected examples with multiple catalytic systems, see:
(a) C. B. Jacobsen, K. L. Jensen, J. Udmark and K. A. Jørgensen,
Org. Lett., 2011, 13, 4790; (b) A. Quintard, A. Alexakis and C. Mazet,
Angew. Chem., Int. Ed., 2011, 50, 2354; (c) B. M. Trost and X. Luan,
J. Am. Chem. Soc., 2011, 133, 1706; (d) B.-C. Hong, N. S. Dange,
C. Hsu, J. Liao and G. Lee, Org. Lett., 2011, 13, 1338; (e) Y. Wang,
D.-F. Yu, Y.-Z. Liu, H. Wei, Y.-C. Luo, D. J. Dixon and P.-F. Xu,
Chem.–Eur. J., 2010, 16, 3922; ( f ) Q. Cai, C. Zheng and S.-L. You,
Angew. Chem., Int. Ed., 2010, 49, 8666; (g) D. E. A. Raup, B. Cardinal-
David, D. Holte and K. A. Scheidt, Nat. Chem., 2010, 2, 766;
10 (a) S. Harada, N. Kumagai, T. Kinoshita, S. Matsunaga and
M. Shibasaki, J. Am. Chem. Soc., 2003, 125, 2582; (b) T. Nishimura,
X.-X. Guo, N. Uchiyama, T. Katoh and T. Hayashi, J. Am. Chem. Soc.,
˜
2008, 130, 1576; (c) M. W. Paixao, N. Holub, C. Vila, M. Nielsen and
K. A. Jørgensen, Angew. Chem., Int. Ed., 2009, 48, 7338; (d) F. De Vincentiis,
G. Bencivenni, F. Pesciaioli, A. Mazzanti, G. Bartoli, P. Galzerano and
P. Melchiorre, Chem.–Asian J., 2010, 5, 1652.
11 E. Campaiqne and S. W. Schnell, J. Org. Chem., 1968, 33, 4304.
12 Simple enones such as chalcones do not react with 2,4-dienals via
trienamine activation.
13 S.-J. Zhang, J. Zhang, Q.-Q. Zhou, L. Dong and Y.-C. Chen, Org. Lett.,
2013, 15, 968.
14 K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht and K. A. Jørgensen,
Acc. Chem. Res., 2012, 45, 248.
c
5894 Chem. Commun., 2013, 49, 5892--5894
This journal is The Royal Society of Chemistry 2013