rearrangement process 3b ? 4b remains unclear yet. Running
the reaction in CD3OD did not result in deuterium incorporation
in the new ethyl group. Moreover, when a sample of the crude
reaction mixture was left in an aprotic solvent such as CDCl3
this demetallation–remetallation process also occured. These
observations tend to indicate that 4b may be formed through an
intramolecular rearrangement as demonstrated by Steenwinkel
et al. for a related ruthenocyclic molecule.5
To the best of our knowledge the only precedent of a Ru-
mediated functionalization of a C–H bond to afford a vinyl
derivative such as 2a,b was reported by Murai and coworkers6
when reacting aromatic imines or imidates with mono-
substituted olefins in the presence of catalytic amounts of
Ru3(CO)12. It is generally assumed that this type of product is
formed by b-H elimination from a carbometallation inter-
mediate. Consequently the formation of 2a,b and 3a,b can be
rationalised according to the reaction path depicted in Scheme
1. The first step involves the insertion of ethylene into the C–Ru
bond followed by a b-H elimination leading to an olefin–
hydride complex.7 This leads on one hand to the metal free
substituted olefin 2a,b as in the Heck reaction and on the other
hand to the one carbon-atom insertion complex 3a,b by anti-
Markovnikov hydrometallation of the olefinic unit (Scheme
1).
We thank INTAS (INTAS-97-166) for financial support of
this work.
Notes and references
‡ Selected data (J/Hz): 2a: dH(200 MHz, CDCl3) 7.55 (m, 1H, C6H4), 7.26
(m, 3H, C6H4), 7.17 (dd, 1H, CHNCH2, 3J 17.5, 3J 11.0), 5.68 (dd, 1H,
CHNCHEHZ, 3J 17.5, 2J 1.4), 5.30 (dd, 1H, CHNCHEHZ, 3J 11.0, 2J 1.4),
3.44 (s, 2H, CH2N), 2.24 (s, 6H, NMe2). 2b: dH(200 MHz, CDCl3) 7.44 (m,
2H, C6H4), 7.24 (m, 2H, C6H4), 7.23 (dd, 1H, CHNCH2, 3J 17.4, 3J 11.0),
3
2
3
5.57 (dd, 1H, CHNCHEHZ, J 17.4, J 1.6), 5.29 (dd, 1H, CHNCHEHZ, J
11.0, 2J 1.6), 3.53 (q, 1H, CHCH3, 3J 6.6), 2.21 (s, 6H, NMe2), 1.31 (d, 3H,
CHCH3). 3a: Anal. Calc. (found) for C17H22NClRu·0.25CH2Cl2: C, 52.04
(52.27); H, 5.70 (5.72); N, 3.52 (3.66)%. dH(300 MHz, CDCl3) 7.58 (d, 1H,
C6H4, 3J 7.7), 7.33 (m, 2H, C6H4), 6.88 (d, 1H, C6H4, 3J 4.0), 4.90 (s, 6H,
C6H6), 3.53 (q, 1H, CHCH3, 3J 7.1), 3.39 and 2.29 (AB, 2H, CH2N, 2J 11.4),
3.24 and 2.28 (2s, 6H, NMe2), 2.14 (d, 3H, CHCH3). dC(75 MHz, CDCl3)
153.8, 133.3, 129.4, 129.0, 121.6 and 120.4 (C6H4), 83.0 (C6H6), 64.7
(CH2N), 56.5 and 56.3 (NMe), 36.8 (CHRu), 24.5 (CHCH3). 3aA: dH(200
MHz, CD3CN) 7.62 (d, 1H, C6H4, 3J 7.4), 7.34 (m, 2H, C6H4), 6.99 (d, 1H,
C6H4, 3J 6.6), 5.14 (s, 6H, C6H6), 3.24 and 2.63 (AB, 2H, CH2N, 2J 11.8),
3.09 (q, 1H, CHCH3, 3J 7.4), 3.01 and 2.38 (2s, 6H, NMe2), 2.14 (s, 3H,
CH3CN), 2.08 (d, 3H, CHCH3). 3b: dH(500 MHz, CD2Cl2) 7.57 (d, 1H,
3
C6H4, J 7.7), 7.29 (t, 1H, C6H4), 7.02 (d, 1H, C6H4). 6.90 (t, 1H, C6H4),
4.88 (s, 6H, C6H6), 3.57 (2q, 2H, CHCH3Ru and CHCH3N), 3.32 and 2.07
(2s, 6H, NMe2), 2.11 (d, 3H, CHCH3Ru, 3J 7.1), 1.29 (d, 3H, CHCH3N, 3J
6.9). 4b: dH(500 MHz, CD2Cl2) 7.51 (d, 1H, C6H3, 3J 7.4), 6.94 (t, 1H,
C6H3). 6.68 (d, 1H, C6H3), 5.32 (s, 6H, C6H6), 3.45 (q, 1H, CHCH3, 3J 6.6),
3.10 and 2.33 (2s, 6H, NMe2), 2.44 (q, 2H, CH2CH3, 3J 7.6), 1.16 (d, 3H,
CHCH3), 1.14 (t, 3H, CH2CH3).
1 R. F. Heck, Org. React. (New York), 1982, 27, 345.
2 S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda
and N. Chatani, Nature, 1993, 366, 529; F. Kakiuchi, S. Sekine, Y.
Tanaka, A. Kamatani, M. Sonoda, N. Chatani and S. Murai, Bull. Chem.
Soc. Jpn., 1995, 68, 62.
3 Y. Guari, S. Sabo-Etienne and B. Chaudret, J. Am. Chem. Soc., 1998, 120,
4228.
4 (a) H. C. L. Abbenhuis, M. Pfeffer, J. P. Sutter, A. de Cian, J. Fischer, H.
Li Ji and J. H. Nelson, Organometallics, 1993, 12, 4464; (b) S. Attar, J. H.
Nelson, J. Fischer, A. de Cian, J. P. Sutter and M. Pfeffer, Organome-
tallics, 1995, 14, 4559; (c) S. Fernandez, M. Pfeffer, V. Ritleng and C.
Sirlin, Organometallics, 1999, 18, 2390.
5 P. Steenwinkel, S. L. James, R. A. Gossage, D. M. Grove, H. Kooijman,
W. J. J. Smeets, A. L. Spek and G. van Koten, Organometallics, 1998, 17,
4680.
6 F. Kakiuchi, M. Yamauchi, N. Chatani and S. Murai, Chem. Lett., 1996,
111; F. Kakiuchi, T. Sato, M. Yamauchi, N. Chatani and S. Murai, Chem.
Lett., 1999, 19.
Scheme 1
7 For a leading reference concerning olefin–hydride complexes, see: J. W.
Faller and K. J. Chase, Organometallics, 1995, 14, 1592.
Studies are currently under way to determine the conditions
that would allow us to direct the reaction toward the exclusive
formation of one of these products.
Communication a908703f
130
Chem. Commun., 2000, 129–130