ChemComm
Communication
and 88% yields, respectively (eqn (2)). Further, isoquinolone deriva-
tives 3i and 3n reacted with diphenylacetylene (2a) in the presence of
[{RuCl2(p-cymene)}2], Na2CO3 and Cu(OAc)2ꢀH2O in chlorobenzene
(2.0 mL) at 120 1C for 16 h to yield tricyclic compounds 5e and 5f in
95% and 93% yields, respectively (eqn (3)).4f In the reaction, the
ortho C–H bond of one of the phenyl groups and the amide N–H
bond of 3i or 3n were involved in the cyclization reaction.
(2)
Scheme 2 Proposed mechanism.
presence of ruthenium and copper catalysts. Further extension
of cyclization of substituted nitriles with other p-components
and detailed mechanistic investigation are in progress.
We thank the DST (SR/S1/OC-26/2011), India, for the support
of this research. M.C.R. thanks the CSIR for a fellowship.
(3)
A cooperatively ruthenium- and copper-catalyzed reaction
mechanism is proposed for the present cyclization reaction as
shown in Scheme 2. In the copper-catalyzed reaction, Cu(OAc)2
likely acts as a Lewis acid to which the CN group of benzonitrile 1
is coordinated to give intermediate 5. In this stage, Cu(OAc)2 likely
reduces the electron density of the nitrile group. Subsequently,
nucleophilic addition of AcOH to the CN group in intermediate 5
followed by hydrolysis affords benzamide 11 and regenerates
Cu(OAc)2.8 In the ruthenium-catalyzed reaction, KPF6 likely
removes the chloride ligand from the [{RuCl2(p-cymene)}2]
complex followed by the ligand exchange with Cu(OAc)2, giving
cationic ruthenium species 7. Coordination of the nitrogen group
of 11 to the ruthenium cationic species 7 followed by ortho-
metalation in the presence of AcOH affords a five-membered
ruthenacycle 9.9 Coordinative insertion of alkyne 2 into the Ru–
carbon bond of ruthenacycle 9 provides intermediate 10. Reduc-
tive elimination of intermediate 10 in the presence of Cu(OAc)2
gives product 3 and regenerates the active ruthenium species 7 for
the next catalytic cycle. In the reaction, only 30 mol% of Cu(OAc)2
is used as an internal oxidant. The remaining amount of Cu(OAc)2
source is regenerated under oxygen or air from the reduced
copper source in the presence of AcOH.
Notes and references
1 Selected references: (a) J. R. Lewis, Nat. Prod. Rep., 1994, 11, 329;
(b) B. D. Krane, M. O. Fagbule and M. Shamma, J. Nat. Prod., 1984,
47, 1; (c) K. W. Bentley, Nat. Prod. Rep., 1992, 9, 365; (d) B. D. Krane
and M. Shamma, J. Nat. Prod., 1982, 45, 377.
2 Selected examples: (a) R. P. Korivi, Y.-C. Wu and C.-H. Cheng, Chem.–Eur. J.,
2009, 15, 10727; (b) C.-C. Liu, K. Parthasarathy and C.-H. Cheng, Org. Lett.,
2010, 12, 3518, and references therein.
3 Rhodium reviews for oxidative cyclization: (a) P. Thansandote and
M. Lautens, Chem.–Eur. J., 2009, 15, 5874; (b) T. Satoh and M. Miura,
Chem.–Eur. J., 2010, 16, 11212; (c) G. Song, F. Wang and X. Li, Chem. Soc.
Rev., 2012, 41, 3651; (d) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem.
¨
Rev., 2010, 110, 624; (e) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius,
Chem. Soc. Rev., 2011, 40, 4740; Ruthenium reviews: ( f ) P. B. Arockiam,
C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012, 112, 5879; (g) B. Li and
P. H. Dixneuf, Chem. Soc. Rev., 2013, 42, DOI: 10.1039/c3cs60020c;
(h) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147.
4 Rhodium reports: (a) S. Mochida, N. Umeda, K. Hirano, T. Satoh and
M. Miura, Chem. Lett., 2010, 744; (b) T. K. Hyster and T. Rovis, J. Am. Chem.
Soc., 2010, 132, 10565; (c) G. Song, X. Gong and X. Li, J. Org. Chem., 2011,
76, 7583; Ruthenium reports: (d) L. Ackermann, A. V. Lygin and
N. Hofmann, Angew. Chem., Int. Ed., 2011, 50, 6379; (e) L. Ackermann,
A. V. Lygin and N. Hofmann, Org. Lett., 2011, 13, 3278; ( f ) B. Li, H. Feng,
S. Xu and B. Wang, Chem.–Eur. J., 2012, 18, 12873; (g) K. Parthasarathy,
N. Senthilkumar, J. Jayakumar and C.-H. Cheng, Org. Lett., 2012, 14, 3478;
(h) P. B. Arockiam, C. Fischmeister, C. Bruneau and P. H. Dixneuf, Green
Chem., 2011, 13, 3075; (i) Y. Hashimoto, K. Hirano, T. Satoh, F. Kakiuchi
and M. Miura, Org. Lett., 2012, 14, 2058; ( j) L. Ackermann, Acc. Chem. Res.,
2013, DOI: 10.1021/ar3002798.
5 (a) N. Guimond, C. Gouliaras and K. Fagnou, J. Am. Chem. Soc., 2010,
132, 6908; (b) N. Guimond, S. I. Gorelsky and K. Fagnou, J. Am. Chem.
Soc., 2011, 133, 6449; (c) B. Li, H. Feng, S. Xu and B. Wang, Chem.–
Eur. J., 2011, 17, 12573; (d) L. Ackermann and S. Fenner, Org. Lett.,
2011, 13, 6548; (e) B. Li, J. Ma, N. Wang, H. Feng, S. Xu and B. Wang,
Org. Lett., 2012, 14, 736; ( f ) S. Rakshit, C. Grohmann, T. Besset and
F. Glorius, J. Am. Chem. Soc., 2011, 133, 2350.
(4)
The proposed mechanism was strongly supported by the follow-
ing mechanistic evidence (eqn (4)). Treatment of 1a (1.0 mmol)
with AcOH in the presence of Cu(OAc)2ꢀH2O (15 mol%) at 120 1C
in air gave 3,4-dimethoxy benzamide 11a in 95% yield. Further,
the treatment of 11a with 2a (1.0 equiv.) in the presence
of [{RuCl2(p-cymene)}2] (5.0 mol%), KPF6 (20 mol%) and
Cu(OAc)2ꢀH2O (30 mol%) in acetic acid at 120 1C for 10 h in air
provided isoquinolone 3a in an isolated yield of 75%.
6 G. Song, D. Chen, C.-L. Pan, R. H. Crabtree and X. Li, J. Org. Chem.,
2011, 133, 2350.
7 (a) C. G. Ravi Kiran and M. Jeganmohan, Eur. J. Org. Chem., 2012, 417;
(b) C. G. Ravi Kiran and M. Jeganmohan, Chem. Commun., 2012,
48, 2030; (c) C. G. Ravi Kiran, S. Pimparkar and M. Jeganmohan, Org.
Lett., 2012, 14, 3032; (d) M. C. Reddy and M. Jeganmohan, Chem.
Commun., 2013, 49, 481; (e) C. G. Ravi Kiran, S. Pimparkar and
M. Jeganmohan, Chem. Commun., 2013, 49, 3146; ( f ) C. G. Ravi Kiran,
S. Pimparkar and M. Jeganmohan, Chem. Commun., 2013, 49, 3703.
8 V. Yu. Kukushkin and A. J. L. Pombeiro, Inorg. Chim. Acta, 2005, 358, 1.
9 E. F. Flegeau, C. Bruneau, P. H. Dixneuf and A. Jutand, J. Am. Chem.
Soc., 2011, 133, 10161.
In conclusion, we have demonstrated the oxidative cycliza-
tion of aromatic and heteroaromatic nitriles with alkynes in the
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.