Journal of the American Chemical Society
Communication
(5) For selected reviews of ansamycin natural products, see:
(a) Wrona, I. E.; Agouridas, V.; Panek, J. S. C. R. Chim. 2008, 11,
1483. (b) Funayama, S.; Cordell, G. A. Stud. Nat. Prod. Chem. 2000, 23,
51.
(6) For the isolation of rifamycin B, see: (a) Sensi, P.; Margalith, P.;
Timbal, M. T. Farmaco, Ed. Sci. 1959, 14, 146. (b) Sensi, P.; Greco, A.
M.; Ballotta, R. Antibiot. Chemother. 1960, 262. (c) Margalith, P.;
Beretta, G. Mycopathol. Mycol. Appl. 1960, 13, 21. (d) Margalith, P.;
Pagani, H. Appl. Microbiol. 1961, 9, 325.
Process Res. Dev. 2011, 15, 1236. (c) Moran, J.; Krische, M. J. Pure Appl.
Chem. 2012, 84, 1729.
(15) (a) Seyferth, D.; Pornet, J.; Weinstein, R. M. Organometallics
1982, 1, 1651. (b) Schlosser, M.; Zellner, A.; Leroux, F. Synthesis 2001,
1830.
(16) Evans, D. A.; Allison, B. D.; Yang, M. G.; Masse, C. E. J. Am. Chem.
Soc. 2001, 123, 10840.
(17) (a) Zbieg, J. R.; Moran, J.; Krische, M. J. J. Am. Chem. Soc. 2011,
133, 10582. (b) McInturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am.
Chem. Soc. 2012, 134, 20628.
(7) For the isolation of mycotrienols I and II and mycotrienins I and II
(18) (a) Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16040.
(b) Skucas, E.; Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129,
7242. (c) Han, S. B.; Kong, J.-R.; Krische, M. J. Org. Lett. 2008, 10, 4133.
(d) Williams, V. M.; Kong, J.-R.; Ko, B.-J.; Mantri, Y.; Brodbelt, J. S.;
Baik, M.-H.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 16054.
(19) For recent reviews, see: (a) Molander, G. A.; Figueroa, R.
Aldrichimica Acta 2005, 38, 49. (b) Molander, G. A.; Sandrock, D. L.
Curr. Opin. Drug Discovery Dev. 2009, 12, 811. (c) Molander, G. A.;
Canturk, B. Angew. Chem., Int. Ed. 2009, 48, 9240.
(20) For a review of B-alkyl Suzuki cross-coupling, see: Chemler, S. R.;
Trauner, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4544.
(21) Screening a wide range of ligands showed that RuPhos is uniquely
effective in the present B-alkyl Suzuki cross-coupling. See: Milne, J. E.;
Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 3028.
(ansatrienins A and B), see: (a) Weber, W.; Zahner, H.; Damberg, M.;
̈
Russ, P.; Zeeck, A. Zentralbl. Bakteriol., Mikrobiol. Hyg., Abt. 1., Orig. C
1981, 2, 122. (b) Zeeck, A.; Damberg, M.; Russ, P. Tetrahedron Lett.
1982, 23, 59. (c) Sugita, M.; Furihata, K.; Seto, H.; Otake, N.; Sasaki, T.
Agric. Biol. Chem. 1982, 46, 1111. (d) Sugita, M.; Natori, Y.; Sasaki, T.;
Furihata, K.; Shimazu, A.; Seto, H.; Otake, N. J. Antibiot. 1982, 35, 1460.
(e) Sugita, M.; Sasaki, T.; Furihata, K.; Seto, H.; Otake, N. J. Antibiot.
1982, 35, 1467. (f) Sugita, M.; Natori, Y.; Sueda, N.; Furihata, K.; Seto,
H.; Otake, N. J. Antibiot. 1982, 35, 1474. (g) Sugita, M.; Hiramoto, S.;
Ando, C.; Sasaki, T.; Furihata, K.; Seto, H.; Otake, N. J. Antibiot. 1985,
38, 799.
(8) For the isolation of trienomycins A−F, see: (a) Umezawa, I.;
Funayama, S.; Okada, K.; Iwasaki, K.; Satoh, J.; Masuda, K.; Komiyama,
K. J. Antibiot. 1985, 38, 699. (b) Hiramoto, S.; Sugita, M.; Ando, C.;
Sasaki, T.; Furihata, K.; Seto, H.; Otake, N. J. Antibiot. 1985, 38, 1103.
(c) Funayama, S.; Okada, K.; Komiyama, K.; Umezawa, I. J. Antibiot.
1985, 38, 1107. (d) Funayama, S.; Okada, K.; Iwasaki, K.; Komiyama, K.;
Umezawa, I. J. Antibiot. 1985, 38, 1677. (e) Nomoto, H.; Katsumata, S.;
Takahashi, K.; Funayama, S.; Komiyama, K.; Umezawa, I.; Omura, S. J.
Antibiot. 1989, 42, 1677. (f) Smith, A. B., III; Wood, J. L.; Gould, A. E.;
Omura, S.; Komiyama, K. Tetrahedron Lett. 1991, 32, 1627.
(22) Hiroya, K.; Takuma, K.; Inamoto, K.; Sakamoto, T. Heterocycles
2009, 1, 493.
(23) Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217.
(24) Yu, J.; Gaunt, M. J.; Spencer, J. B. J. Org. Chem. 2002, 67, 4627.
(25) For a review of polyketide stereotetrads in natural products, see:
Koskinen, A. M. P.; Karisalmi, K. Chem. Soc. Rev. 2005, 34, 677.
(26) The use of MgBr2 in the presence of both Me2S and 1,3-
dimethoxybenzene is required for efficient PMB ether cleavage in the
presence of the 1,3-diene. See: (a) Onoda, T.; Shirai, R.; Iwasaki, S.
Tetrahedron Lett. 1997, 38, 1443. (b) Jung, M. E.; Koch, P. Tetrahedron
Lett. 2011, 52, 6051.
(9) For the isolation of cytotrienins A−D, see: (a) Zhang, H.-P.;
Kakeya, H.; Osada, H. Tetrahedron Lett. 1997, 38, 1789. (b) Kakeya, H.;
Zhang, H.-P.; Kobinata, K.; Onose, R.; Onozawa, C.; Kudo, T.; Osada,
H. J. Antibiot. 1997, 50, 370. (c) Osada, H.; Kakeya, H.; Zhang, H.-P.;
Kobinata, K. PCT Int. Appl. WO 9823594, 1998.
(27) Furstner, A.; Grabowski, J.; Lehmann, C. W. J. Org. Chem. 1999,
̈
64, 8275.
(10) (a) Komiyama, K.; Hirokawa, Y.; Yamaguchi, H.; Funayama, S.;
Masuda, K.; Anraku, Y.; Umezawa, I.; Omura, S. J. Antibiot. 1987, 40,
1768. (b) Funayama, S.; Anraku, Y.; Mita, A.; Yang, Z. B.; Shibata, K.;
Komiyama, K.; Umezawa, I.; Omura, S. J. Antibiot. 1988, 41, 1223.
(11) For stereochemical assignments of the trienomycins and
mycotrienins, see: (a) Smith, A. B., III; Wood, J. L.; Wong, W.;
Gould, A. E.; Rizzo, C. J. J. Am. Chem. Soc. 1990, 112, 7425. (b) Smith, A.
B., III; Wood, J. L.; Omura, S. Tetrahedron Lett. 1991, 32, 841. (c) Smith,
A. B., III; Barbosa, J.; Hosokawa, N.; Naganawa, H.; Takeuchi, T.
Tetrahedron Lett. 1998, 39, 2891. (d) Smith, A. B., III; Wood, J. L.;
Wong, W.; Gould, A. E.; Rizzo, C. J.; Barbosa, J.; Funayama, S.;
Komiyama, K.; Omura, S. J. Am. Chem. Soc. 1996, 118, 8308.
(12) For total and formal syntheses of triene-containing ansamycins,
see: Trienomycins A and F and thiazinotrienomycin E: (a) Smith, A. B.,
III; Barbosa, J.; Wong, W.; Wood, J. L. J. Am. Chem. Soc. 1995, 117,
10777. (b) Smith, A. B., III; Barbosa, J.; Wong, W.; Wood, J. L. J. Am.
Chem. Soc. 1996, 118, 8316. (c) Smith, A. B., III; Wan, Z. Org. Lett. 1999,
1, 1491. (d) Smith, A. B., III; Wan, Z. J. Org. Chem. 2000, 65, 3738.
Mycotrienol I and mycotrienin I: (e) Panek, J. S.; Masse, C. E. J. Org.
Chem. 1997, 62, 8290. (f) Masse, C. E.; Yang, M.; Solomon, J.; Panek, J.
S. J. Am. Chem. Soc. 1998, 120, 4123. Cytotrienin A: (g) Hayashi, Y.;
Shoji, M.; Ishikawa, H.; Yamaguchi, J.; Tamaru, T.; Imai, H.; Nishigaya,
Y.; Takabe, K.; Kakeya, H.; Osada, H. Angew. Chem., Int. Ed. 2008, 47,
6657.
(28) Presently, the manufacturing route to eribulin involves an LLS of
41 steps and 72 total steps, impeding access to large quantities of the
drug. See: (a) Chase, C. E.; Fang, F. G.; Lewis, B. M.; Wilkie, G. D.;
Schnaderbeck, M. J.; Zhu, X. Synlett 2013, 323. (b) Austad, B. C.;
Benayoud, F.; Calkins, T. L.; Campagna, S.; Chase, C. E.; Choi, H.-w.;
Christ, W.; Costanzo, R.; Cutter, J.; Endo, A.; Fang, F. G.; Hu, Y.; Lewis,
B. M.; Lewis, M. D.; McKenna, S.; Noland, T. A.; Orr, J. D.; Pesant, M.;
Schnaderbeck, M. J.; Wilkie, G. D.; Abe, T.; Asai, N.; Asai, Y.; Kayano,
A.; Kimoto, Y.; Komatsu, Y.; Kubota, M.; Kuroda, H.; Mizuno, M.;
Nakamura, T.; Omae, T.; Ozeki, N.; Suzuki, T.; Takigawa, T.;
Watanabe, T.; Yoshizawa, K. Synlett 2013, 327. (c) Austad, B. C.;
Calkins, T. L.; Chase, C. E.; Fang, F. G.; Horstmann, T. E.; Hu, Y.;
Lewis, B. M.; Niu, X.; Noland, T. A.; Orr, J. D.; Schaderbeck, M. J.;
Zhang, H.; Asakawa, N.; Asai, N.; Chiba, H.; Hasebe, T.; Hoshino, Y.;
Ishizuka, H.; Kajima, T.; Kayano, A.; Komatsu, Y.; Kubota, M.; Kuroda,
H.; Miyazawa, M.; Tagami, K.; Watanabe, T. Synlett 2013, 333.
(29) For total and formal syntheses of polyketide natural products via
C−C bond-forming hydrogenation and transfer hydrogenation, see:
(a) Han, S. B.; Hassan, A.; Kim, I.-S.; Krische, M. J. J. Am. Chem. Soc.
2010, 132, 15559. (b) Lu, Y.; Woo, S. K.; Krische, M. J. J. Am. Chem. Soc.
2011, 133, 13876. (c) Gao, X.; Woo, S. K.; Krische, M. J. J. Am. Chem.
Soc. 2013, 135, 4223. (d) Waldeck, A. R.; Krische, M. J. Angew. Chem.,
Int. Ed. 2013, 52, 4470. (e) Gao, X.; Han, H.; Krische, M. J. J. Am. Chem.
Soc. 2011, 133, 12795.
(30) For a review of “redox economy”, see: Baran, P. S.; Hoffmann, R.
W.; Burns, N. Z. Angew. Chem., Int. Ed. 2009, 48, 2854.
(13) For syntheses of the ansatrienol and cytotrienin cores, see:
(a) Kashin, D.; Meyer, A.; Wittenberg, R.; Schoning, K.-U.; Kamlage, S.;
Kirschning, A. Synthesis 2007, 304. (b) Evano, G.; Schaus, J. V.; Panek, J.
(31) “The ideal synthesis creates a complex skeleton ... in a sequence
only of successive construction reactions involving no intermediary
refunctionalizations, and leading directly to the structure of the target,
not only its skeleton but also its correctly placed functionality.”
Hendrickson, J. B. J. Am. Chem. Soc. 1975, 97, 5784.
S. Org. Lett. 2004, 6, 525. (c) Rossle, M.; Del Valle, D. J.; Krische, M. J.
̈
Org. Lett. 2011, 13, 1482.
(14) For recent reviews of C−C bond-forming hydrogenation and
transfer hydrogenation, see: (a) Bower, J. F.; Krische, M. J. Top.
Organomet. Chem. 2011, 43, 107. (b) Hassan, A.; Krische, M. J. Org.
D
dx.doi.org/10.1021/ja4061273 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX