ACS Chemical Biology
Articles
and PA-IIL are controlled by quorum sensing and by RpoS. J. Bacteriol.
182, 6401−6411.
terminally capped mannosides as inhibitors of LecB. Such
capping modifications are expected to yield selective inhibitors
for the pathogenic lectin over lectins of the host. Studies
addressing the selectivity and in vivo efficacy of the reported
compounds are ongoing. Knowledge gained from this work will
further improve LecB inhibitors, which may lead to a novel
class of anti-virulence drugs. Due to such a mode of action, a
strongly reduced potential of developing resistant strains can be
anticipated,45 and follow-up compounds may constitute a
suitable treatment of nosocomial infections and respiratory
tract infections of cystic fibrosis patients.
(9) Chemani, C., Imberty, A., de Bentzmann, S., Pierre, M.,
́
Wimmerova, M., Guery, B. P., and Faure, K. (2009) Role of LecA
and LecB lectins in Pseudomonas aeruginosa-induced lung injury and
effect of carbohydrate ligands. Infect. Immun. 77, 2065−2075.
́
(10) Adam, J., Pokorna, M., Sabin, C., Mitchell, E. P., Imberty, A.,
́
and Wimmerova, M. (2007) Engineering of PA-IIL lectin from
Pseudomonas aeruginosa - Unravelling the role of the specificity loop
for sugar preference. BMC Struct. Biol. 7, 36.
(11) Bajolet-Laudinat, O., Girod-de Bentzmann, S., Tournier, J. M.,
Madoulet, C., Plotkowski, M. C., Chippaux, C., and Puchelle, E.
(1994) Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to
respiratory epithelial cells in primary culture. Infect. Immun. 62, 4481−
4487.
(12) Bernardi, A., Jimenez-Barbero, J., Casnati, A., De Castro, C.,
́
Darbre, T., Fieschi, F., Finne, J., Funken, H., Jaeger, K.-E., Lahmann,
M., Lindhorst, T. K., Marradi, M., Messner, P., Molinaro, A., Murphy,
ASSOCIATED CONTENT
* Supporting Information
Details of molecular modeling studies and all experimental
■
S
1
procedures, as well as H NMR and 13C NMR spectra. This
material is available free of charge via the Internet at http://
P. V., Nativi, C., Oscarson, S., Penades
Renaudet, O., Reymond, J.-L., Richichi, B., Rojo, J., Sansone, F.,
́
, S., Peri, F., Pieters, R. J.,
Schaffer, C., Turnbull, W. B., Velasco-Torrijos, T., Vidal, S., Vincent,
̈
S., Wennekes, T., Zuilhof, H., and Imberty, A. (2012) Multivalent
glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 42, 4709−
4727.
AUTHOR INFORMATION
Corresponding Author
■
́
(13) Diggle, S. P., Stacey, R. E., Dodd, C., Camara, M., Williams, P.,
and Winzer, K. (2006) The galactophilic lectin, LecA, contributes to
biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 8,
1095−1104.
Present Address
⊥Theoretical Medicinal Chemistry and Biophysics, Institute of
Pharmacy, University of Tubingen, D-72076 Tubingen,
̈
̈
(14) Ernst, B., and Magnani, J. L. (2009) From carbohydrate leads to
glycomimetic drugs. Nat. Rev. Drug Discovery 8, 661−677.
(15) Imberty, A., Chabre, Y. M., and Roy, R. (2008) Glycomimetics
and glycodendrimers as high affinity microbial anti-adhesins. Chem.
Eur. J. 14, 7490−7499.
Germany.
Author Contributions
#These authors contributed equally to this work.
Notes
(16) Sharon, N. (2006) Carbohydrates as future anti-adhesion drugs
for infectious diseases. Biochim. Biophys. Acta 1760, 527−537.
(17) Tielker, D., Hacker, S., Loris, R., Strathmann, M., Wingender, J.,
Wilhelm, S., Rosenau, F., and Jaeger, K.-E. (2005) Pseudomonas
aeruginosa lectin LecB is located in the outer membrane and is
involved in biofilm formation. Microbiology 151, 1313−1323.
(18) Kadam, R. U., Bergmann, M., Hurley, M., Garg, D., Cacciarini,
M., Swiderska, M. A., Nativi, C., Sattler, M., Smyth, A. R., Williams, P.,
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Generous funding was received from the Zukunftskolleg, the
Deutsche Forschungsgemeinschaft, and the Fonds der Chem-
ischen Industrie. The authors acknowledge fruitful discussions
with R. Sommer, D. Strasser, S. Wagner, and V. Wittmann. J.
Hartig is kindly acknowledged for generous support. We are
grateful to B. Furones and E. Gillon for technical assistance, A.-
L. Steck is acknowledged for the HRMS measurements. We
acknowledge the use of beamline Proxima 1 at the Soleil
synchrotron (France).
́
Camara, M., Stocker, A., Darbre, T., and Reymond, J.-L. (2011) A
glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA
and of Pseudomonas aeruginosa biofilms. Angew. Chem., Int. Ed. 50,
10631−10635.
(19) Johansson, E. M. V., Crusz, S. A., Kolomiets, E., Buts, L., Kadam,
́
R. U., Cacciarini, M., Bartels, K.-M., Diggle, S. P., Camara, M.,
Williams, P., Loris, R., Nativi, C., Rosenau, F., Jaeger, K.-E., Darbre, T.,
and Reymond, J.-L. (2008) Inhibition and dispersion of Pseudomonas
aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-
specific lectin LecB. Chem. Biol. 15, 1249−1257.
(20) von Bismarck, P., Schneppenheim, R., and Schumacher, U.
(2001) Successful treatment of Pseudomonas aeruginosa respiratory
tract infection with a sugar solution–a case report on a lectin based
therapeutic principle. Klin. Padiatr. 213, 285−287.
(21) Hauber, H.-P., Schulz, M., Pforte, A., Mack, D., Zabel, P., and
Schumacher, U. (2008) Inhalation with fucose and galactose for
treatment of Pseudomonas aeruginosa in cystic fibrosis patients. Int. J.
Med. Sci. 5, 371−376.
REFERENCES
■
(1) Cross, A., Allen, J. R., Burke, J., Ducel, G., Harris, A., John, J.,
Johnson, D., Lew, M., MacMillan, B., and Meers, P. (1983)
Nosocomial infections due to Pseudomonas aeruginosa: review of
recent trends. Clin. Infect. Dis. 5, S837−845.
(2) Peleg, A. Y., and Hooper, D. C. (2010) Hospital-acquired
infections due to GRAM-negative bacteria. New Engl. J. Med 362,
1804−1813.
(3) Tummler, B., and Kiewitz, C. (1999) Cystic fibrosis: an inherited
̈
susceptibility to bacterial respiratory infections. Mol. Med. Today 5,
351−358.
(22) Loris, R., Tielker, D., Jaeger, K.-E., and Wyns, L. (2003)
Structural basis of carbohydrate recognition by the lectin LecB from
Pseudomonas aeruginosa. J. Mol. Biol. 331, 861−870.
(4) Poole, K. (2011) Pseudomonas aeruginosa: resistance to the max.
Front. Microbiol. 2, 65.
(5) Davies, D. (2003) Understanding biofilm resistance to
antibacterial agents. Nat. Rev. Drug Discovery 2, 114−122.
(6) Flemming, H.-C., and Wingender, J. (2010) The biofilm matrix.
Nat. Rev. Microbiol. 8, 623−633.
(7) Gilboa-Garber, N. (1982) Pseudomonas aeruginosa lectins.
Methods Enzymol. 83, 378−385.
(8) Winzer, K., Falconer, C., Garber, N. C., Diggle, S. P., Camara, M.,
and Williams, P. (2000) The Pseudomonas aeruginosa lectins PA-IL
(23) Mitchell, E., Houles, C., Sudakevitz, D., Wimmerova, M.,
́
Gautier, C., Perez, S., Wu, A. M., Gilboa-Garber, N., and Imberty, A.
(2002) Structural basis for oligosaccharide-mediated adhesion of
Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat.
Struct. Biol. 9, 918−921.
́
(24) Perret, S., Sabin, C., Dumon, C., Pokorna, M., Gautier, C., Galanina,
O., Ilia, S., Bovin, N., Nicaise, M., Desmadril, M., Gilboa-Garber, N.,
1783
dx.doi.org/10.1021/cb400371r | ACS Chem. Biol. 2013, 8, 1775−1784