ACS Combinatorial Science
Research Article
Promising Modules in Drug Discovery. Angew. Chem., Int. Ed. 2006,
45, 7736−7739.
(11) Mickelson, J. W.; Belonga, K. L.; Jacobsen, E. J. Asymmetric
Synthesis of 2,6-Methylated Piperazines. J. Org. Chem. 1995, 60,
4177−4183.
Fellowship. S.F.L., A.G., J.S., and C.B. were funded by the
HHMI Exceptional Research Opportunities Program
(EXROP). D.C. was funded by Summer Research Oppor-
tunities at Harvard (SROH).
Notes
(12) Adam, W.; Bosio, S. G.; Turro, N. J. Highly diastereoselective
dioxetane formation in the photooxygenation of enecarbamates with
an oxazolidinone chiral auxiliary: steric control in the [2 + 2]
cycloaddition of singlet oxygen through conformational alignment. J.
Am. Chem. Soc. 2002, 124, 8814−8815.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors are grateful for contributions from Ursula Krenz
and her team (Bayer) for solubility measurements; Ursula
■
́
(13) Paz, J.; Perez-Balado, C.; Iglesias, B.; Munoz, L. Carbon dioxide
̃
as a carbonylating agent in the synthesis of 2-oxazolidinones, 2-
oxazinones, and cyclic ureas: scope and limitations. J. Org. Chem. 2010,
75, 3037−3046.
Ganzer and Jurgen Scholz (Bayer) for solubility assay
̈
optimization and measurements; the Broad Institute Com-
pound Management team for curating the synthesized
compounds; and Dr. Stephen Johnston (Broad) for solubility
measurements and analytical chemistry support.
(14) Espino, C.G.; Du Bois, J. A Rh-catalyzed C-H insertion reaction
for the oxidative conversion of carbamates to oxazolidinones. Angew.
Chem., Int. Ed. 2001, 40, 598−600.
(15) Allali, H.; Tabti, B.; Alexandre, C.; Huet, F. An easy route to 4-
substituted 2-oxazolidinones from prochiral-1,3-diols. Tetrahedron:
Asymmetry 2004, 15, 1331−1333.
REFERENCES
■
(1) Joseph-McCarthy, D.; Campbell, A. J.; Kern, G.; Moustakas, D.
Fragment-based lead discovery and design. J. Chem. Inf. Model. 2014,
54, 693−704.
(16) Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Melchiorre, P.;
Sambri, L. Direct catalytic synthesis of enantiopure 5-substituted
oxazolidinones from racemic terminal epoxides. Org. Lett. 2005, 7,
1983−1985.
(17) Yamanaka, T.; Kondoh, A.; Terada, M. Kinetic resolution of
racemic amino alcohols through intermolecular acetalization catalyzed
by a chiral brønsted acid. J. Am. Chem. Soc. 2015, 137, 1048−1051.
(18) Van Delft, F.L.; Timmers, C. M.; Van der Marel, G. A.; van
Boom, J. H. Preparation of 2-oxazolidinones by intramolecular
nucleophilic substitution. Synthesis 1997, 4, 450−454.
(19) (a) Norman, B. H.; Kroin, J. S. Alkylation Studies of N-
Protected-5-substituted Morpholin-3-ones. A Stereoselective Ap-
proach to Novel Methylene Ether Dipeptide Isosteres. J. Org. Chem.
1996, 61, 4990−4998. (b) Brenner, E.; Baldwin, R. M.; Tamagnan, G.
Asymmetric Synthesis of (+)-(S,S)-Reboxetine via a New (S)-2-
(Hydroxymethyl)morpholine Preparation. Org. Lett. 2005, 7, 937−
939. (c) Angell, R.; Fengler-Veith, M.; Finch, H.; Harwood, L. M.;
(2) (a) Murray, C. W.; Rees, D. C. The rise of fragment-based drug
discover. Nat. Chem. 2009, 1, 187−192. (b) Baker, M. Fragment-based
lead discovery grows up. Nat. Rev. Drug Discovery 2013, 12, 5−7.
(c) Souers, A. J.; Leverson, J. D.; Boghaert, E. R.; Ackler, S. L.; Catron,
N. D.; Chen, J.; Dayton, B. D.; Ding, H.; Enschede, S. H.; Fairbrother,
W. J.; Huang, D. C. S.; Hymowitz, S. G.; Jin, S.; Khaw, S. L.; Kovar, P.
J.; Lam, L. T.; Lee, J.; Maecker, H. L.; Marsh, K. C.; Mason, K. D.;
Mitten, M. J.; Nimmer, P. M.; Oleksijew, A.; Park, C. H.; Park, C.-M.;
Phillips, D. C.; Roberts, A. W.; Sampath, D.; Seymour, J. F.; Smith, M.
L.; Sullivan, G. M.; Tahir, S. K.; Tse, C.; Wendt, M. D.; Xiao, Y.; Xue,
J. C.; Zhang, H.; Humerickhouse, R. A.; Rosenberg, S. H.; Elmore, S.
W. ABT-199, a potent and selective BCL-2 inhibitor, achieves
antitumor activity while sparing platelets. Nat. Med. 2013, 19, 202−
208. (d) Hennessy, E. J. Selective inhibitors of Bcl-2 and Bcl-xL:
Balancing antitumor activity with on-target toxicity. Bioorg. Med. Chem.
Lett. 2016, 26, 2105−2114.
Tucker, T. T. Cycloadditions of 1,3-oxazolium-4-olates (isomunch-
̈
(3) Erlanson, D. Fragment-based lead discovery: a chemical update.
Curr. Opin. Biotechnol. 2006, 17, 643−652.
(4) McLeod, M. C.; Singh, G.; Plampin, J. N., III; Rane, D.; Wang, J.
L.; Day, V. W.; Aube, J. Probing chemical space with alkaloid-inspired
́
libraries. Nat. Chem. 2014, 6, 133−140.
nones) by rhodium(II)-induced decomposition of α-diazocarbonyl
derivatives of (5R)- and (5S)-phenyloxazin-3-one as a chiral template.
Tetrahedron Lett. 1997, 38, 4517−4520.
(20) (a) Alexander, R.; Balasundaram, A.; Batchelor, M.; Brookings,
́
D.; Crepy, K.; Crabbe, T.; Deltent, M.-F.; Driessens, F.; Gill, A.;
(5) (a) Larrow, J. F.; Schaus, S. E.; Jacobsen, E. N. Kinetic Resolution
of Terminal Epoxides via Highly Regioselective and Enantioselective
Ring Opening with TMSN3. An Efficient, Catalytic Route to 1,2-
Amino Alcohols. J. Am. Chem. Soc. 1996, 118, 7420−7421. (b) Kumar,
M.; Kureshy, R. I.; Saravanan, S.; Verma, S.; Jakhar, A.; Khan, N. H.;
Abdi, S. H. R.; Bajaj, H. C. Unravelling a New Class of Chiral
Organocatalyst for Asymmetric Ring-Opening Reaction of Meso
Epoxides with Anilines. Org. Lett. 2014, 16, 2798−2801.
(6) Trost, B. M.; Terrell, L. R. A Direct Catalytic Asymmetric
Mannich-type Reaction to syn-Amino Alcohols. J. Am. Chem. Soc.
2003, 125, 338−339.
Harris, S.; Hutchinson, G.; Kulisa, C.; Merriman, M.; Mistry, P.;
Parton, T.; Turner, J.; Whitcombe, I.; Wright, S. 4-(1,3-Thiazol-2-
yl)morpholine derivatives as inhibitors of phosphoinositide 3-kinase.
Bioorg. Med. Chem. Lett. 2008, 18, 4316−4320. (b) Dugar, S.; Sharma,
A.; Kuila, B.; Mahajan, D.; Dwivedi, S.; Tripathi, V. A concise and
efficient synthesis of substituted morpholines. Synthesis 2015, 47, 712−
720.
(21) Bettoni, G.; Franchini, C.; Tortorella, V.; et al. Synthesis and
Absolute Configuration of Substituted Morpholines. Tetrahedron
1980, 36, 409−415.
(22) Kashima, C.; Harada, K. Synthesis and reaction of optically
active morpholinones. J. Chem. Soc., Perkin Trans. 1 1988, 6, 1521−
1526.
(23) Kang, S.; Han, J.; Lee, E.S.; Choi, E. B.; Lee, H. K.
Enantioselective synthesis of cyclic sulfamidates by using chiral
rhodium-catalyzed asymmetric transfer hydrogenation. Org. Lett.
2010, 12, 4184−4187.
(24) (a) Mansueto, M.; Frey, W.; Laschat, S. Ionic liquid crystals
derived from amino acids. Chem. - Eur. J. 2013, 19, 16058−16065.
(b) Kim, S. J.; Jung, M.-H.; Yoo, K. H.; Cho, J.-H.; Oh, C.-H. Synthesis
and antibacterial activities of novel oxazolidinones having cyclic
sulfonamide moieties. Bioorg. Med. Chem. Lett. 2008, 18, 5815−5818.
(c) Zhang, L.; Luo, S.; Mi, X.; Liu, S.; Qiao, Y.; Xu, H.; Cheng, J.-P.
Combinatorial synthesis of functionalized chiral and doubly chiral
ionic liquids and their applications as asymmetric covalent/non-
́ ́
(7) Baeza, A.; Casas, J.; Najera, C.; Sansano, J. M.; Saa, J. M.
Enantioselective Synthesis of Cyanohydrin O-Phosphates Mediated by
the Bifunctional Catalyst Binolam−AlCl. Angew. Chem., Int. Ed. 2003,
42, 3143−3146.
(8) (a) Fraunhoffer, K. J.; White, M. C. syn-1,2-Amino Alcohols via
Diastereoselective Allylic C-H Amination. J. Am. Chem. Soc. 2007, 129,
7274−7276. (b) Covell, D. J.; White, M. C. A Chiral Lewis Acid
Strategy for Enantioselective Allyl C-H Oxidation. Angew. Chem., Int.
Ed. 2008, 47, 6448−6451.
(9) Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.; Barbas, C. F., III.
Direct Catalytic Asymmetric Synthesis of anti-1,2-Amino Alcohols and
syn-1,2-Diols through Organocatalytic anti-Mannich and syn-Aldol
Reactions. J. Am. Chem. Soc. 2007, 129, 288−289.
(10) Wuitschik, G.; Rogers-Evans, M.; Muller, K.; Fischer, H.;
̈
Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M. Oxetanes as
E
ACS Comb. Sci. XXXX, XXX, XXX−XXX