Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
On the basis of the above results and previous studies,10
a
4
Soc., Chem. Commun., 1991, 421; (b) DMO.I:B1r0o.1o0k3h9a/Drt0,CFC.0C5.36R2ixG,
J. M. DeSimone and J. C. Barborak, J. Am. Chem. Soc., 1992,
114, 5894; (c) A. Nakamura, K. Munakata, S. Ito, T. Kochi, L. W.
Chung, K. Morokuma and K. Nozaki, J. Am. Chem. Soc., 2011,
133, 6761; (d) X. F. Wu, H. Neumann and M. Beller, Chem. -
Asian J., 2012, 7, 1199; (e) H. Heeres, A. J. Minnaard, B. Hessen
and H. J. Heeres, Org. Process Res. Dev., 2012, 16, 400; (f) W.
Chang, J. Dai, J. Li, Y. Shi, W. Ren and Y. Shi, Org. Chem. Front.,
2017, 4, 1074; (g) H. Wang and X-F. Wu, J. Organomet. Chem.,
2020, 910, 121134.
tentative reaction pathway for this carbonylative cycloaddition
reaction was proposed (Fig. 1). Initially, palladium hydride
species II is formed via oxidative addition of NH4Cl to
(RuPhos)Pd(0) I, which is formed in situ via reduction of Pd(II)
with CO or phosphine ligand. The selective hydropalladation of
2-vinylbenzaldehyde with II under the assistance of aldehyde
affords the benzylpalladium species III, which further reacts
with CO to produce the intermediate IV. The subsequent
reductive elimination of IV gives the intermediate V and
regenerates the Pd(0) species. The transient benzopyran-2-one
VI is then generated by deprotonation under the assistance of
base, which undergoes [4+2]-cycloaddition with an alkene to
give the desired product 3. Huckel calculations showed that the
LUMO of VI has much larger coefficients at C-1 than at C-4,
which lead to highly regioselectivity.15b, 18c
In summary, we have designed and implemented a new and
efficient strategy to realize an efficient palladium-catalyzed
carbonylative cross-coupling reaction with two different
alkenes and CO. With commercially available catalyst
components, a variety of 2-vinyl aryl aldehydes and simple
alkenes could be directly carbonylated to complex bridged
polycyclic compounds in good to excellent yields. Remarkable
chemo- and stereoselectivity were observed by using the
aldehyde-functionality as the reactive directing group. The
resulting bridged polycyclic products could be derivatized to
useful synthons. Notably, this transformation proceeds in a
100% atom economy and builds a connection between a
palladium-catalyzed hydrocarbonylation and cycloaddition.
Mechanism studies suggest that the reactive aldehyde-
functionality facilitates the hydrocarbonylation and enables the
high chemoselectivity. We expect that these controllable
hydrocarbonylation/cycloaddition processes will provide new
routes to upcycle the simple olefin and CO feedstock into
valuable carbonyl products with versatile uses. Further studies
on substrate scope and mechanism are currently underway and
will be reported in due course.
5
(a) J. R. Hummel, J. A. Boerth and J. A. Ellman, Chem. Rev.,
2017, 117, 9163; (b) C. Sambiagio, D. Schonbauer, R. Blieck, T.
Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J.
Wencel-Delord, T. Besset, B. U. W. Maes and M. Schnurch,
Chem. Soc. Rev., 2018, 47, 6603; (c) P.Gandeepan and L.
Ackermann, Chem, 2018, 4, 199
(a) R. Giri and J.-Q. Yu, J. Am. Chem. Soc., 2008, 130, 14082;
(b) M. Wasa, K. M. Engle and J.-Q. Yu, J. Am. Chem. Soc., 2010,
132, 3680; (c) A. Iglesias, R. Alvarez, A. R. de Lera and K. Muniz,
Angew. Chem., Int. Ed., 2012, 51, 2225; (d) C. P. Lenges and
M. Brookhart, J. Am. Chem. Soc., 1993, 121, 6616.
6
7
(a) H. Yasuda, R. Nakano, S. Ito and K. Nozaki, J. Am. Chem.
Soc., 2018, 140, 1876; (b) C. Tan and C. Chen, Angew. Chem.,
Int. Ed., 2019, 131, 7268.
8
9
F. Zhang and D. R. Spring, Chem. Soc. Rev., 2014, 43, 6906.
(a) K. Padala and M. Jeganmohan, Org. Lett., 2012, 14, 1134;
(b) C. Liu, M. Liu, J. Sun, C. Li and L. Dong, Org. Chem. Front.,
2018, 5, 2115; (c) J. Yin, M. Tan, D. Wu, R. Jiang, C. Li and J.
You, Angew. Chem., Int. Ed., 2017, 56, 13094; (d) X. Liu, G. Li,
F. Song and J. You, Nat Commun., 2014, 5, 5030; (e) R.
Santhoshkuma, S. Mannathan and C. H. Cheng, J. Am. Chem.
Soc., 2015, 137, 16116.
10 (a) B. Gao, G. Zhang, X. Zhou and H. Huang, Chem. Sci., 2018,
9, 380; (b) G. Zhang, B. Gao and H. Huang, Angew. Chem., Int.
Ed., 2015, 54, 7657; (c) X. Zhou, A. Chen, W. Du, Y. Wang, Y.
Peng and H. Huang, Org. Lett., 2019, 21, 9114; (d) S. Zou, B.
Gao, Y. Huang, T. Zhang and H. Huang, Org. Lett., 2019, 21,
6333; (e) J. Li, S. Wang, S. Zou and H. Huang, Commun. Chem,
2019, 2, 14; (f) Y. Hu and H. Huang, Org. Lett., 2017, 19, 5070;
(g) Y. Hu, Z. Shen and H. Huang, ACS Catal., 2016, 6, 6785.
11 N. Uchiyama, F. Kiuchi, M. Ito, G. Honda, Y. Takeda, O. K.
Khodzhimatov and O. A. Ashurmetov, Tetrahedron, 2006, 6,
4355.
12 Y. Y. Fan, J. B. Xu, H. C. Liu, L. S. Gan, J. Ding, and J. M. Yue, J.
Nat. Prod., 2017, 80, 3159.
13 K.-C. Hsu, J.-M. Fang and Y.-S. Cheng, J. Nat. Prod., 1995, 58,
1592.
This research was supported by the National Natural Science
Foundation of China (21790333, 21925111, 21672199 and
21702197).
14 C. H. Brieskorn, A. Fuchs, J. B. Bredenberg, J. D. McChesney
and E. Wenkert, J. Org. Chem., 1964, 29, 2293.
15 (a) K. Afarinkia, M. J. Bearpark and A. Ndibwami, J. Org. Chem.,
2005, 70, 1122; (b) D. A. Bleasdale and D. W. Jones, J. Chem.
Soc., Perkin Trans., 1991, 1, 1683.
Conflicts of interest
There are no conflicts to declare
16 (a) F. Pan, G. B. Boursalian and T. Ritter, Angew. Chem., Int.
Ed., 2018, 57, 16871; (b) R. Martin and S. L. Buchwald, Acc.
Chem. Res., 2008, 41, 1461.
17 CCDC 1990497 (3a), 1991852 (exo-3a) 1990498 (3aa),
1990499 (3am) and 1990501 (3an) contain the
supplementary crystallographic data for this paper. This data
can be obtained free of charge from The Cambridge
Notes and references
1
2
S. Zhang, H. Neumann and M. Beller, Chem. Soc. Rev. 2020,
49, 3187.
(a) P. Kalck and M. Urrutigoity, Chem. Rev., 2018, 118, 3833;
(b) X.-F. Wu, X. Fang, L. Wu, R. Jackstell, H. Neumann and M.
Beller, Acc. Chem. Res. 2014, 47, 1041; (c) T. Kégl,
Carbonylation of Alkenes and Dienes. In Modern
Carbonylation Methods; pp. 161-198 (Wiley, 2008).
(a) J. Yang, J. Liu, H. Neumann, R. Franke, R. Jackstell and M.
Beller, Science, 2019, 366, 1514; (b) D. Ding, G. Zhu, and X.
Jiang, Angew. Chem., Int. Ed., 2018, 57, 9028; (c) A. Acerbi, C.
Carfagna, M. Costa, R. Mancuso, B. Gabriele, and N. Della Ca’,
Chem. Eur. J. 2018, 24, 4835.
Crystallographic
Data
Centre
via
18 (a) D. Wu, H. J. Ge, S. H. Liu and J. Yin, RSC Adv., 2013, 3,
22727; (b) N. Sakai, T. Moriya and T. Konakahara, J. Org.
Chem., 2007, 72, 5920; (c) D. A. Bleasdale and D. W. Jones, J.
Chem. Soc., Chem. Commun., 1985, 1027; (d) A. Abengózar, P.
García-García, D. Sucunza, A. Pérez-Redondo and J. J.
Vaquero, Chem. Commun., 2018, 54, 2467.
3
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins