ChemComm
Communication
in Supramolecular Chemistry II- Host Design and Molecular Recognition,
ed. E. Weber, Springer-Verlag, Berlin, Heidelberg, 1995.
complexation of pyridines to ZnPG2-2 indicates that G3Py well
matches the cavity size of ZnPG2-2 and has a positive interaction
with the dendron (probably p–p interaction) and the solvent
exclusion effect.
¨
3 (a) L. Kovbasyuk and R. Kramer, Chem. Rev., 2004, 104, 3161;
(b) M. Takeuchi, M. Ikeda, A. Sugasaki and S. Shinkai, Acc. Chem.
Res., 2001, 34, 865; (c) S. Shinkai, M. Ikeda, A. Sugasaki and
M. Takeuchi, Acc. Chem. Res., 2001, 34, 494.
From the discussion above, the behaviour of the binding
constants of fullerenes in the presence of pyridine derivatives
cannot be explained by electronic change or the solvent effect.
However, it can be understood from the steric effect, i.e., the
size of the second cavity for the fullerene becomes narrower
when large pyridines bind to the first site, and for C60 and C70
the cavity size becomes more comfortable, but for C84, the
cavity size gets slightly too small when in DPAG3Py complexes.
For further thermodynamic study, the DH–DS plot18 of
ZnPG2-2 with several guests was created (Fig. S4, ESI†). The
slope of 311 and the intercept of À5.13 kcal molÀ1 were
obtained from the plot and this relatively large slope and
intercept suggest that this dendritic host is more similar to
protein type hosts than to synthetic macrocyclic hosts, i.e., the
structure change and structural fixing after binding are large,
and the elimination of the solvent in the cavity plays an
important role. This result is consistent with the result that
was described earlier, i.e., the co-binding behaviour of ZnPG2-2
suggests that bulky pyridine complexation results in large
conformational change of the second cavity. The structural
change effect could also be determined using the thermo-
dynamic parameter of the C70 binding with and without G3Py
(determined using van’t Hoff equation, Fig. S5, ESI†). The DH0
of À21 Æ 3 kcal molÀ1 and DS0 of À54 Æ 5 cal molÀ1 KÀ1
without G3Py increased to À4 Æ 4 kcal molÀ1 and +9 Æ
4 (a) A. Hashidzume, F. Ito, I. Tomatsu and A. Harada, Macromol.
Rapid Commun., 2005, 26, 1151; (b) I. Yamaguchi and H. Mitsuno,
Macromolecules, 2010, 43, 9348; (c) A. Aydogan, D. J. Coady,
S. K. Kim, A. Akar, C. W. Bielawski, M. Marquez and J. L. Sessler,
Angew. Chem., Int. Ed., 2008, 47, 9648; (d) J.-F. Gnichwitz,
M. Wielopolski, K. Hartnagel, U. Hartnagel, D. M. Guldi and
A. Hirsch, J. Am. Chem. Soc., 2008, 130, 8491.
5 (a) N. W. Turner, C. W. Jeans, K. R. Brain, C. J. Allender, V. Hlady
and D. W. Britt, Biotechnol. Prog., 2006, 22, 1474; (b) K. Haupt and
K. Mosbach, Chem. Rev., 2000, 100, 2495.
6 S. Suriyanarayanan, P. J. Cywinski, A. J. Moro, G. J. Mohr and
W. Kutner, Top. Curr. Chem., 2012, 325, 165.
7 (a) D. Astruc, E. Boisselier and C. Ornelas, Chem. Rev., 2010,
110, 1857; (b) D. A. Tomalia, J. Nanopart. Res., 2009, 11, 1251;
¨
(c) M. Fischer and F. Vogtle, Angew. Chem., Int. Ed., 1999, 38, 884;
(d) A. W. Bosman, H. M. Janssen and E. W. Meijer, Chem. Rev., 1999,
99, 1665; (e) G. R. Newkome and C. Shreiner, Chem. Rev., 2010,
´
110, 6338; ( f ) S. M. Grayson and J. M. J. Frechet, Chem. Rev., 2001,
101, 3819.
8 (a) J. F. G. A. Jansen, E. M. M. de Brabander-van den Berg and
E. W. Meijer, Science, 1994, 266, 1226; (b) M. T. Morgan,
Y. Nakanishi, D. J. Kroll, A. P. Griset, M. A. Carnahan, M. Wathier,
N. H. Oberlies, G. Manikumar, M. C. Wani and M. W. Grinstaff,
Cancer Res., 2006, 66, 11913; (c) R. E. Bauer, C. G. Clark Jr. and
K. Mu¨llen, New J. Chem., 2007, 31, 1275.
´
9 (a) W. Ong, M. Gomez-Kaifer and A. E. Kaifer, Chem. Commun., 2004,
1677; (b) S. Shinoda, J. Inclusion Phenom. Macrocyclic Chem., 2007,
59, 1; (c) S. Shinoda, M. Ohashi and H. Tsukube, Chem.–Eur. J., 2007,
13, 81; (d) F. Zeng and S. C. Zimmerman, Chem. Rev., 1997, 97, 1681;
(e) R. Buschbeck and H. Lang, Organomet. Chem., 2005, 62, 696;
( f ) F. Wessendorf, J.-F. Gnichwitz, G. H. Sarova, K. Hager,
U. Hartnagel, D. M. Guldi and A. Hirsch, J. Am. Chem. Soc., 2007,
127, 16057.
12 cal molÀ1
K
À1, respectively, upon complexation of G3Py to
10 For dendrimer hosts that encapsulate fullerenes, see the following:
(a) J.-F. Eckert, D. Byrne, J.-F. Nicoud, L. Oswald, J.-F. Nierengarten,
M. Numata, A. Ikeda, S. Shinkai and N. Armaroli, New J. Chem.,
2000, 24, 749; (b) D. I. Schuster, J. Rosenthal, S. MacMahon,
P. D. Jarowski, C. A. Alabi and D. M. Guldi, Chem. Commun., 2002,
2538; (c) J.-F. Nierengarten, L. Oswald, J.-F. Eckert, J.-F. Nicoud and
N. Armaroli, Tetrahedron Lett., 1999, 40, 5681; (d) M. Kimura,
T. Shiba, M. Yamazaki, K. Hanabusa, H. Shirai and N. Kobayashi,
J. Am. Chem. Soc., 2001, 123, 5636.
11 S. C. Zimmerman, M. S. Wendland, N. A. Rakow1, I. Zharov and
K. S. Suslick, Nature, 2002, 418, 399.
12 (a) K. Albrecht and K. Yamamoto, J. Am. Chem. Soc., 2009, 131, 2244;
(b) F. Loiseau, S. Campagna, A. Hameurlaine and W. Dehaen, J. Am.
Chem. Soc., 2005, 127, 11352; (c) J. Ding, J. Gao, Y. Cheng, Z. Xie,
L. Wang, D. Ma, X. Jing and F. Wang, Adv. Funct. Mater., 2006,
16, 575.
13 (a) K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta and H. Chiba,
Nature, 2002, 415, 509; (b) K. Yamamoto, T. Imaoka, W. J. Chun,
O. Enoki, H. Katoh, M. Takenaga and A. Sonoi, Nat. Chem., 2009,
1, 397; (c) N. Satoh, T. Nakashima, K. Kamikura and K. Yamamoto,
Nat. Nanotechnol., 2008, 3, 106; (d) K. Takanashi, H. Chiba,
M. Higuchi and K. Yamamoto, Org. Lett., 2004, 6, 1709.
14 (a) K. Albrecht, Y. Kasai, A. Kimoto and K. Yamamoto, Macromole-
cules, 2008, 41, 3793; (b) K. Albrecht, Y. Kasai and K. Yamamoto,
J. Inorg. Organomet. Polym. Mater., 2009, 19, 118; (c) K. Albrecht,
R. Pernites, M. J. Felipe, R. C. Advincula and K. Yamamoto, Macro-
molecules, 2012, 45, 1288.
the dendrimer. The large increase in DS0 indicates that the
second cavity changes the conformation and decreases the
vibration after the initial complexation with G3Py.
In conclusion, it was found that the size-selective fullerene
association of the fourth-generation carbazole–phenylazomethine
dendrimer can be controlled by axial coordination to the core
porphyrin. The thermodynamic studies and experiments using
bulky pyridine derivatives revealed that this modulation happens
mainly in a steric (allosteric) manner. As a consequence, the
selectivity of the fullerene could be changed by coordination of
G3Py (C70 o C84 to C70 > C84). This is one of the first examples of
an allosteric macromolecular host, and further studies on the
higher allosteric effect, higher selectivity, and applications to
fullerene isolation are underway.
This work was supported in part by the CREST program of
the Japan Science and Technology (JST) Agency, Grant-in-Aids
for Scientific Research on Innovative Areas ‘‘Coordination
Programming’’ (area 2107, no. 21108009) and by a Grant-in-Aid
for Encouragement of Young Scientists (B) (no. 24750099) from
the Japan Society for the Promotion of Science (JSPS).
15 K. Albrecht, Y. Kasai, Y. Kuramoto and K. Yamamoto, Chem.
Commun., 2013, 49, 865.
Notes and references
16 K. Hatano, K. Kawasaki, S. Munakata and Y. Iitaka, Bull. Chem. Soc.
Jpn., 1987, 60, 1985.
1 Protein–Ligand Interactions From Molecular Recognition to
¨
¨
17 A. Laiho, R. H. A. Ras, S. Valkama, J. Ruokolainen, R. Osterbacka
Drug Design, ed. H.-J. Bohm and G. Schneider, WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim, 2003.
and O. Ikkala, Macromolecules, 2006, 39, 7648.
2 W. L. Mock, R. P. Sijbesma, R. J. M. Nolte, U. Lu¨ning, C. Seel, 18 K. N. Houk, A. G. Leach, S. P. Kim and X. Zhang, Angew. Chem., Int.
´
A. Galan, J. de Mendoza, Y. Murakami, J. Kikuchi and O. Hayashida,
Ed., 2003, 42, 4872.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 6861--6863 6863