ChemComm
Communication
Table 3 Hydrogenation of other CQN bonds with 1fa
In conclusion, we report the reduction of a diverse range of
N-heterocyclic compounds under mild conditions (ambient
temperature, 1 atm H2) without the use of any additives. Key
to the success of the reaction is the choice of ligand and the use
of TFE as solvent. The reaction was found to be tolerant of a
wide range of other, potentially reducible, functional groups
and could be carried out using standard laboratory glassware
and non-purified solvent. Thus, our results demonstrate a
simple, yet highly selective reduction of N-heterocycles and
imines with hydrogen gas as a highly effective alternative to
the heterogeneous metal catalysts and borohydrides commonly
used for these reactions, whilst offering greatly increased
reactivity and selectivity.
Entry
Substrate
Prod.
Conv.b (%)
1c
2
3
Quinoxaline
2-Me-quinoxaline
6-Me-quinoxaline
5a
5b
5c
>98 (95)
>98 (93)
>98 (95)
4–8
5d–5h
See below
4
5
6
7
8
R1, R2 = H, R3 = Me
R1, R2 = H, R3 = Pr
R1, R2 = H, R3 = Cy
R1, R2 = MeO, R3 = Cy
R1, R2 = MeO, R3 = Ph
5d
5e
5f
5g
5h
>98 (88)
>98 (93)
>98 (89)
>98 (91)
>98 (90)
i
We thank the University of Liverpool (JHB) and Pfizer (JW)
for funding. Mass spectrometry data was acquired at the EPSRC
UK National Mass Spectrometry Facility at Swansea University.
9
5i
96 (85)
Notes and references
1 The Handbook of Homogeneous Hydrogenation, ed. J. G. de Vries and
C. J. Elsevier, Wiley-VCH, Weinheim, 2007.
10
5j
>98 (99)
´
2 (a) V. Sridharan, P. Suryavanshi and J. C. Menendez, Chem. Rev.,
11
12
13d
14
15
2-Me-indole
Indole
5-MeO-indole
4-MeO-acetophenone
4-MeO-styrene
5k
5l
5m
5n
5o
86 (83)
82 (78)
>98 (95)
N.R.
2011, 111, 7157; (b) J. D. Scott and R. M. Williams, Chem. Rev., 2002,
102, 1669; (c) R. H. Crabtree, Energy Environ. Sci., 2008, 1, 134.
3 (a) M. R. Pitts, J. R. Harrison and C. J. J. Moody, J. Chem. Soc., Perkin
Trans. 1, 2001, 955; (b) G. W. Gribble, Chem. Soc. Rev., 1998, 27, 395.
4 D.-S. Wang, Q.-A. Chen, S.-M. Lu and Y.-G. Zhou, Chem. Rev., 2012,
112, 2557.
5 (a) E. Baralt, S. J. Smith, J. Hurwitz, I. T. Horvath and R. H. Fish,
J. Am. Chem. Soc., 1992, 114, 5187; Ru: (b) T. Wang, L.-G. Zhuo, Z. Li,
F. Chen, Z. Ding, Y. He, Q.-H. Fan, J. Xiang, Z.-X. Yu and A. S.
C. Chan, J. Am. Chem. Soc., 2011, 133, 9878; (c) S.-M. Lu, X.-W. Han
and Y.-G. Zhou, J. Organomet. Chem., 2007, 692, 3065; Ir:
(d) G. E. Dobereiner, A. Nova, N. D. Schley, N. Hazari, S. J. Miller,
O. Eisenstein and R. H. Crabtree, J. Am. Chem. Soc., 2011, 133, 7547;
(e) R. Yamaguchi, C. Ikeda, Y. Takahashi and K. Fujita, J. Am. Chem.
Soc., 2009, 131, 8410; ( f ) W.-B. Wang, S.-M. Lu, P.-Y. Yang,
X.-W. Han and Y.-G. Zhou, J. Am. Chem. Soc., 2003, 125, 10536;
(g) Z.-W. Li, T.-L. Wang, Y.-M. He, Z.-J. Wang, Q.-H. Fan, J. Pan and
L.-J. Xu, Org. Lett., 2008, 10, 5265; (h) S.-M. Lu, Y.-Q. Wang,
X.-W. Han and Y.-G. Zhou, Angew. Chem., Int. Ed., 2006, 45, 2260;
(i) W.-J. Tang, J. Tan, L.-J. Xu, K.-H. Lam, Q.-H. Fan and A. S.
N.R.
a
Conditions: substrate (0.5 mmol), 1f (1 mol%), TFE (3 mL), rt, 3 h, H2
b
balloon. As for Table 1. A conversion of >98% was assigned when the
substrate was not observable in the spectrum. Isolated yields in
parentheses. 0.5 mol% 1f. N.R. = no reaction. 40 1C, 20 h.
c
d
´
C. Chan, Adv. Synth. Catal., 2010, 352, 1055; Os: ( j) R. A. Sanchez-
´
Delgado and E. Gonzalez, Polyhedron, 1989, 8, 1431; Mo: (k) G. Zhu,
Fig. 3 Synthesis and reactions of hydride 6.
K. Pang and G. Parkin, J. Am. Chem. Soc., 2008, 130, 1564; Fe:
(l) T. J. Lynch, M. Banah, H. D. Kaesz and C. R. Porter, J. Org. Chem.,
1984, 49, 1266.
6 (a) C. Wang, A. Pettman, J. Bacsa and J. Xiao, Angew. Chem., Int. Ed.,
2010, 49, 7548; (b) J. H. Barnard, C. Wang, N. G. Berry and J. Xiao,
Chem. Sci., 2013, 4, 1234; (c) Y. Wei, D. Xue, Q. Lei, C. Wang and
J. Xiao, Green Chem., 2013, 15, 629; (d) Q. Lei, Y. Wei, D. Talwar,
C. Wang, D. Xue and J. Xiao, Chem.–Eur. J., 2013, 19, 4021; (e) J. Wu,
D. Talwar, S. Johnston, M. Yan and J. Xiao, Angew. Chem., Int. Ed.,
2013, DOI: 10.1002/anie.201300292.
7 D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton and
D. R. Russell, Dalton Trans., 2003, 4132.
8 K. Gao, P.-S. Lee, C. Long and N. Yoshikai, Org. Lett., 2012, 14, 4234.
9 R. R. Ryall, H. A. Strobel and M. C. R. Symons, J. Phys. Chem., 1977,
81, 253.
10 (a) P. Ballinger and F. A. Long, J. Am. Chem. Soc., 1959, 81, 1050;
11 J. Wu, D. Talwar, S. Johnston, M. Yan and J. Xiao, Angew. Chem., Int.
Ed., 2013, 52, 6983–6987.
12 (a) D.-S. Wang, Q.-A. Chen, W. Li, C.-B. Yu, Y.-G. Zhou and X. Zhang,
J. Am. Chem. Soc., 2010, 132, 8909; (b) A. Kulkarni, W. Zhou and
hydrogenation catalysts13 and five homogeneous catalysts,
including systems that have been shown to be extremely
effective for quinoline hydrogenations,5c,d,i were compared to
1f for the reduction of 2a (see ESI,‡ Table S3). Complex 1f was
found to be over 14 times more active than Rh/C which was the
most active of the heterogeneous catalysts and 6 times as active
as [IrCl(COD)]2/P-Phos/I2, which was the most active of the
other homogeneous catalysts previously reported.5i
In order to gain further information about the reaction mecha-
nism, we prepared the iridium hydride14 species 6 by treating 1f with
an excess of sodium formate in DCM–H2O (Fig. 3). Treatment of 6
with 0.2 equivalents of 2-methylquinoline 2a did not lead to the
formation of 3a. However, the reaction of 6 with 0.2 equivalents of
2-methyl quinolinium tetrafluoroborate led to the rapid formation of
the fully reduced product 3a (see ESI,‡ S1.4 for further details).
Repeating the reactions in the presence of TFE did not alter the
results. These results suggest that the protonated, instead of the
neutral quinoline, is the species that is reduced in the reaction (Fig. 3).
¨ ¨
B. Torok, Org. Lett., 2011, 13, 5124.
13 Heterogeneous Catalysis for the Synthetic Chemist, ed. R. L. Augustine,
Marcel Dekker, New York, 1996.
14 C. Wang, H.-S. T. Chen, J. Bacsa, R. A. Catlow and J. Xiao, Dalton
Trans., 2013, 42, 935.
c
7054 Chem. Commun., 2013, 49, 7052--7054
This journal is The Royal Society of Chemistry 2013