SYNPACTS
Pd-Catalyzed sp2 C–H Hydroxylation
2475
as the oxygen source in the reaction. Based on the above selectivity, good functional group tolerance and high
investigations, we propose that TFA/TFAA can be used as yields. Current work is focused on broadening the scope
a general reagent for Pd-catalyzed C–H hydroxylation of of the reaction and conducting further mechanistic stud-
arenes in phenol synthesis.15
ies.
2
Acknowledgment
O
TFA Pd
O
OH
OH
O
This work was supported by the national ‘973’ grant (grant
2011CB965300), NSFC grant (grant 21142008) and Tsinghua Uni-
versity 985 Phase II funds and Tsinghua University Initiative Scien-
tific Research Program.
Ada
a
b
Ada
Ada
92%
96%
Me
35
33
34
Me
Me
O
CF3C(O)O
O
O
References and Notes
aqueous
workup
t-Bu
t-Bu
c
t-Bu
(1) (a) Tyman, J. H. P. Synthetic and Natural Phenols; Elsevier:
New York, 1996. (b) Rappoport, Z. The Chemistry of
Phenols; Wiley-VCH: Weinheim, 2003. (c) Bedford, R. B.;
Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew.
Chem. Int. Ed. 2003, 42, 112. (d) Dorta, R.; Togni, A. Chem.
Commun. 2003, 760. (e) Boebel, T. A.; Hartwig, J. F. J. Am.
Chem. Soc. 2008, 130, 7534.
37
(confirmed by 1H, 13C, 19F NMR)
F
F
36
13
F
Scheme 8 Studies of the mechanistic pathway. Reagents and condi-
tions: (a) 100% Pd(OAc)2, TFA, r.t.; (b) K2S2O8, r.t., TFA/TFAA;
(c) 5% Pd(OAc)2, K2S2O8, TFA/TFAA, r.t.
(2) Alaimo, P. J.; Knight, Z. A.; Shokat, K. M. Bioorg. Med.
Chem. 2005, 13, 2825.
(3) Miller, J. A. J. Org. Chem. 1987, 52, 322.
(4) Xu, H.; Liang, Y.; Cai, Z.; Qi, H.; Yang, C.; Feng, Y. J. Org.
Chem. 2011, 76, 2296.
(5) Yadav, J. S.; Reddy, B. V. S.; Madan, Ch.; Hashim, S. R.
Chem. Lett. 2000, 29, 738.
Additionally, the result of parallel competition experi-
ments showed that electron-rich aromatic rings react
much faster than their electron-poor counterparts. More-
over, consistent and significant KIE values were observed
from both intra- (kH/kD = 5.6) and intermolecular
(kH/kD = 5.0) isotope effect studies, which suggested that
the C–H bond cleavage step might be the rate-limiting
step of this reaction.
(6) For general reviews on transition-metal-catalyzed C–H
activation of arenes, see: (a) Kakiuchi, F.; Chatani, N. Adv.
Synth. Catal. 2003, 345, 1077. (b) Dick, A. R.; Sanford, M.
S. Tetrahedron 2006, 62, 2439. (c) Godula, K.; Sames, D.
Science 2006, 312, 67. (d) Yu, J. Q.; Giri, R.; Chen, X. Org.
Biomol. Chem. 2006, 4, 4041. (e) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174. (f) Ackermann, L.;
Vicente, R.; Kapdi, A. R. Angew. Chem. Int. Ed. 2009, 48,
9792. (g) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc.
Chem. Res. 2009, 42, 1074. (h) Colby, D. A.; Bergman, R.
G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
(7) For illustrative transition-metal-catalyzed C–H activation of
arenes, see: (a) Enthaler, S.; Company, A. Chem. Soc. Rev.
2011, 40, 4912. (b) Dick, A. R.; Hull, K. L.; Sanford, M. S.
J. Am. Chem. Soc. 2004, 126, 2300. (c) Chernyak, N.;
Dudnik, A. S.; Huang, C.; Gevorgyan, V. J. Am. Chem. Soc.
2010, 132, 8270. (d) Desai, L. V.; Malik, H. A.; Sanford, M.
S. Org. Lett. 2006, 8, 1141. (e) Gou, F. R.; Wang, X. C.;
Huo, P. F.; Bi, H. P.; Guan, Z. H.; Liang, Y. M. Org. Lett.
2009, 11, 5726. (f) Zheng, X.; Song, B.; Xu, B. Eur. J. Org.
Chem. 2010, 4376. (g) Wang, G. W.; Yuan, T. T. J. Org.
Chem. 2010, 75, 476.
(8) (a) Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem.
Soc. 2005, 127, 12790. (b) Kalberer, E. W.; Whitfield, S. R.;
Sanford, M. S. J. Mol. Catal. A: Chem. 2006, 251, 108.
(c) Deprez, N. R.; Sanford, M. S. Inorg. Chem. 2007, 46,
1924. (d) Neufeldt, S. R.; Sanford, M. S. Org. Lett. 2010, 12,
532. (e) Jintoku, T.; Nishimura, K.; Takaki, K.; Fujiwara, Y.
Chem. Lett. 1990, 19, 1687. (f) Xiao, B.; Gong, T. J.; Liu, Z.
J.; Liu, J. H.; Luo, D. F.; Xu, J.; Liu, L. J. Am. Chem. Soc.
2011, 133, 9250. (g) Huang, C. H.; Ghavtadze, N.;
Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011,
133, 17630.
On the basis of our studies, a possible mechanism for this
reaction is proposed in Scheme 9. In the first step, chelate-
directed C–H activation of the substrate could afford a
five-membered cyclopalladium(II) dimeric intermediate.
Then, Pd(II) can be oxidized into a Pd(IV) intermediate in
the following step. The final step (iii) involves carbon–ox-
ygen bond-forming reductive elimination to provide the
trifluoroacetate product and reduces Pd(IV) back into
Pd(II). The trifluoroacetate product is transformed into the
phenol derivatives upon subsequent workup.
2
O
(ii)
TFA Pd
O
(i)
oxidants
t-Bu
t-Bu
TFA
TFA Pd
O
Pd(II)
t-Bu
CF3C(O)O
[H+]
O
OH
O
(iii)
Pd(IV)
t-Bu
t-Bu
Pd(II)
Scheme 9 A possible reaction mechanism
In summary, a Pd(II) catalyzed regio- and chemoselective
phenol synthesis has been developed for the synthesis of
a broad range of functionalized phenols from aryl ketones,
benzoates, benzamides, acetanilides and sulfonamides.16
The reaction proceeds with excellent reactivity, ortho-
(9) (a) Gandeepan, P.; Parthasarathy, K.; Cheng, C. J. Am.
Chem. Soc. 2010, 132, 8569. (b) Xiao, B.; Gong, T.; Xu, J.;
Liu, Z.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466. (c) Dai,
H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu, J.-
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 2472–2476