might be accessible utilizing a cascade sequence involving
an alkynyl-Prins reaction17,18 and FriedelÀCrafts cycliza-
tion19 from an unsymmetrical alkynediol and an aldehyde
(RÀCHO) under Lewis acid mediated conditions (Scheme 2).
Scheme 1. Intermolecular FriedelÀCrafts
Scheme 2. Retrosynthetic Analysis
variation of this reaction with homoallylic alcohols pro-
vided a number of tricyclic compounds via an intermediate
secondary alkyl carbocation.15 While a number of fused
polycyclic pyran derivatives exist in the literature, this
represented a novel approach to their construction, as
many other examples use substrates with a preformed ring
system.16 In contrast to these results, the reaction we
describe occurs via a putative, high-energy alkenyl cation
and includes a subsequent dehydrative aromatization to
afford 2,4-dihydro-1H-benzo[f]isochromenes, which also
represent a novel class of heterotricycles.
The requisite unprotected alkynediol 2a was synthesized
from the known propargylic alcohol 1a20 by conversion to
the dianion with n-BuLi followed by addition to isobutyl-
ene oxide in the presence of BF3 OEt2 (eq 1).21
3
Based on our previous work, we envisioned that a tricyclic
2,4,5,6-tetrahydro-1H-benzo[f]isochromen-5-ol product
(11) For mechanistic studies on the Prins reaction, see: (a) Ogawa, Y.;
Painter, P. P.; Tantillo, D. J.; Wender, P. A. J. Org. Chem. 2013, 78, 104–
115. (b) Zheng, K.; Liu, X.; Qin, S.; Xie, M.; Lin, L.; Hu, C.; Feng, X.
J. Am. Chem. Soc. 2012, 134, 17564–17573. (c) Chio, F. K.; Warne, J.;
Gough, D.; Penny, M.; Green, S.; Coles, S. J.; Hursthouse, M. B.; Jones,
P.; Hassall, L.; McGuire, T. M.; Dobbs, A. P. Tetrahedron 2011, 67,
5107–5124. (d) Gesinski, M. R.; Tadpetch, K.; Rychnovsky, S. D. Org.
Lett. 2009, 11, 5342–5345. (e) Gesinski, M. R.; Van, O. L. J.; Rychnovsky,
S. D. Synlett 2008, 363–366. (f) Tadpetch, K.; Rychnovsky, S. D. Org. Lett.
2008, 10, 4839–4842. (g) Jasti, R.; Rychnovsky, S. D. J. Am. Chem. Soc.
2006, 128, 13640–13648. (h) Jasti, R.; Rychnovsky, S. D. Org. Lett. 2006, 8,
2175–2178. (i) Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. J. Am. Chem.
Soc. 2005, 127, 9939–9945.
(12) The “silyl-Prins” reaction has been studied extensively: (a)
Hemery, T.; Wibbeling, B.; Froehlich, R.; Hoppe, D. Synthesis 2010,
329–342. (b) Meilert, K.; Brimble, M. A. Org. Biomol. Chem. 2006, 4,
2184–2192. (c) Dobbs, A. P.; Guesne, S. J. J. Synlett 2005, 2101–2103. (d)
Semeyn, C.; Blaauw, R. H.; Hiemstra, H.; Speckamp, W. N. J. Org.
Chem. 1997, 62, 3426–3427.
Several different Lewis acid conditions were examined
with alkynediol 2a and propionaldehyde or isobutyralde-
hyde as electrophiles (Table 1). When using propionalde-
hyde (entry 1) relatively low yields were obtained with
1.1 equiv of BF3 OEt2 (average of 72% per reaction).
3
Reactions with the silylated derivative 2b (eq 1) and
stoichiometric Bi(OTf)3 made isolation of 3a more difficult
(entry 2). We also attempted cyclizations with the mono-
TBDPS protected analog 2c, but recovered starting mate-
rials. Reactionsusing isobutyraldehyde weremoreefficient
(entries 3À6), although stoichiometric amounts of BiBr3
and Bi(OTf)3 provided 3b in lower yields (entries 4 and 5).
Halving the concentration of the reaction had no effect on
the isolated yield (entry 6).
(13) The intramolecular silyl-mediated Sakuria reaction (ISMS) in-
volves the same intermediate cation as the silyl-Prins reaction: (a)
ꢀ
Marko, I. E.; Plancher, J.-M. Tetrahedron Lett. 1999, 40, 5259–5262.
ꢀ
(b) Marko, I. E.; Bayston, D. J. Tetrahedron 1994, 50, 7141–7156.
(14) Reddy, U. C.; Saikia, A. K. Synlett 2010, 1027–1032.
(15) (a) Subba Reddy, B. V.; Kumar, H.; Borkar, P.; Yadav, J. S.;
Sridhar, B. Eur. J. Org. Chem. 2013, 1993–1999. (b) Reddy, B. V. S.;
Jalal, S.; Borkar, P.; Yadav, J. S.; Reddy, P. P.; Kunwar, A. C.; Sridhar,
B. Org. Biomol. Chem. 2012, 10, 6562–6568.
As a result of our success with catalytic quantities of
Bi(III) compounds in the synthesis of dihydropyrans,
catalytic quantities (10À20%) of BiBr3 and Bi(OTf)3 were
screened as potential initiators,7,8 but starting materials
(16) (a) Guo, K.;Chen, Y. Mater. Chem. Phys. 2013, 137, 1062–1066. (b)
ꢀ
Schevenels, F.; Tinant, B.; Declercq, J.-P.; Marko, I. E. Chem.;Eur. J.
2013, 19, 4335–4343. (c) Yuan, F.-Q.; Han, F.-S. Adv. Synth. Catal. 2013,
355, 537–547. (d) Shekhar, A. C.; Kumar, A. R.; Sathaiah, G.; Raju, K.;
Rao, P. S.; Sridhar, M.; Narsaiah, B.; Srinivas, P. V. S. S.; Sridhar, B. Helv.
Chim. Acta 2012, 95, 502–508. (e) Sousa, C. M.; Berthet, J.; Delbaere, S.;
Coelho, P. J. J. Org. Chem. 2012, 77, 3959–3968. (f) Thirunavukkarasu,
V. S.; Donati, M.; Ackermann, L. Org. Lett. 2012, 14, 3416–3419. (g) Silva,
L. F., Jr.; Quintiliano, S. A. Tetrahedron Lett. 2009, 50, 2256–2260.
(17) (a) Gharpure, S. J.; Prasath, V. J. Chem. Sci. 2011, 123, 943–949.
(b) Zheng, D.-P.; Gong, W.-C.; Ma, Z.-D.; Ma, B.-Z.; Zhao, X.-L.; Xie,
Z.-X.; Li, Y. Tetrahedron Lett. 2011, 52, 314–317. (c) Kim, C.; Bae, H. J.;
Lee, J. H.; Jeong, W.; Kim, H.; Sampath, V.; Rhee, Y. H. J. Am. Chem.
(18) The descriptor “Prins cyclization” has been used inconsistently
in the literature. However, many authors now interpret the typical Prins
cyclization to involve formation of two bonds in the tetrahydropyran
product, and we are using this definition. See ref 10b for a discussion of
the Prins cyclization.
(19) (a) Reddy, B. V. S.; Reddy, P. S.; Yadav, J. S.; Sridhar, B.
Tetrahedron Lett. 2013, 54, 1392–1396. (b) Suzuki, Y.; Niwa, T.; Yasui,
E.; Mizukami, M.; Miyashita, M.; Nagumo, S. Tetrahedron Lett. 2012,
53, 1337–1340. (c) Basavaiah, D.; Reddy, K. R. Org. Lett. 2006, 9, 57–60.
(20) Xu, C.-F.; Xu, M.; Yang, L.-Q.; Li, C.-Y. J. Org. Chem. 2012,
77, 3010–3016.
Soc. 2009, 131, 14660–14661. (d) Miranda, P O.; Carballo, R. n. M.;
ꢀ
Martı
´
n, V. c. S.; Padrοn, J. I. Org. Lett. 2008, 11, 357–360.
(21) Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391–394.
Org. Lett., Vol. 15, No. 16, 2013
4071