ChemComm
Communication
77, 1617; (e) J. Xuan and W.-J. Xiao, Angew. Chem., Int. Ed., 2012,
51, 6828; ( f ) S. Maity and N. Zheng, Synlett, 2012, 1851; (g) L. Shi
and W. Xia, Chem. Soc. Rev., 2012, 41, 7687; (h) Y. Xi, H. Yi and
A. Lei, Org. Biomol. Chem., 2013, 11, 2387; (i) C. K. Prier, D. A. Rankic
and D. W. C. MacMillan, Chem. Rev., DOI: 10.1021/cr300503r.
2 (a) T. Koike and M. Akita, Chem. Lett., 2009, 166; (b) Y. Yasu, T. Koike
and M. Akita, Chem. Commun., 2012, 48, 5355; (c) Y. Yasu, T. Koike
and M. Akita, Angew. Chem., Int. Ed., 2012, 51, 9567; (d) T. Koike,
Y. Yasu and M. Akita, Chem. Lett., 2012, 999; (e) Y. Yasu, T. Koike and
M. Akita, Adv. Synth. Catal., 2012, 354, 3414; ( f ) Y. Yasu, T. Koike
and M. Akita, Chem. Commun., 2013, 49, 2037; (g) Y. Yasu, T. Koike
and M. Akita, Org. Lett., 2013, 15, 2136.
´
´
3 (a) A. G. Condie, J. C. Gonzalez-Gomez and C. R. J. Stephenson,
J. Am. Chem. Soc., 2010, 132, 1464; (b) M. Rueping, C. Vila,
R. M. Koenigs, K. Poscharny and D. C. Fabry, Chem. Commun.,
2011, 47, 2360; (c) J. Xuan, Y. Cheng, J. An, L.-Q. Lu, X.-X. Zhang and
W.-J. Xiao, Chem. Commun., 2011, 47, 8337; (d) M. Rueping, S. Zhu
and R. M. Koenigs, Chem. Commun., 2011, 47, 8679; (e) Y.-Q. Zou,
L.-Q. Lu, L. Fu, N.-J. Chang, J. Rong, J.-R. Chen and W.-J. Xiao,
Angew. Chem., Int. Ed., 2011, 50, 7171; ( f ) M. Rueping, D. Leonori
and T. Poisson, Chem. Commun., 2011, 47, 9615; (g) D. B. Freeman,
L. Furst, A. G. Condie and C. R. J. Stephenson, Org. Lett., 2012,
14, 94; (h) S. Maity, M. Zhu, R. S. Shinabery and N. Zheng, Angew.
Chem., Int. Ed., 2012, 51, 222; (i) M. Rueping, R. M. Koenigs,
K. Poscharny, D. C. Fabry, D. Leonori and C. Vila, Chem.–Eur. J.,
2012, 18, 5170; ( j) M. Rueping, C. Vila, A. Szadkowska, R. M.
Koenigs and J. Fronert, ACS Catal., 2012, 2, 2810; (k) S. Zhu and
M. Rueping, Chem. Commun., 2012, 48, 11960; (l) S. Cai, X. Zhao,
X. Wang, Q. Liu, Z. Li and D. Z. Wang, Angew. Chem., Int. Ed., 2012,
51, 8050; (m) G. Zhao, C. Yang, L. Guo, H. Sun, C. Chen and W. Xia,
Chem. Commun., 2012, 48, 2337; (n) D. A. DiRocco and T. Rovis,
J. Am. Chem. Soc., 2012, 134, 8094.
4 (a) A. McNally, C. K. Prier and D. W. C. MacMillan, Science, 2011,
334, 1114; (b) P. Kohls, D. Jadhav, G. Pandey and O. Reiser, Org. Lett.,
2012, 14, 672; (c) Y. Miyake, K. Nakajima and Y. Nishibayashi, J. Am.
Chem. Soc., 2012, 134, 3338; (d) Y. Miyake, Y. Ashida, K. Nakajima
and Y. Nishibayashi, Chem. Commun., 2012, 48, 6966; (e) Y. Miyake,
K. Nakajima and Y. Nishibayashi, Chem.–Eur. J., 2012, 18, 16473;
( f ) X. Ju, D. Li, W. Li, W. Yu and F. Bian, Adv. Synth. Catal., 2012,
354, 3561; (g) S. Zhu, A. Das, L. Bui, H. Zhou, D. P. Curran and
M. Rueping, J. Am. Chem. Soc., 2013, 135, 1823.
Scheme 2 A plausible reaction mechanism.
It should be noted that the present photocatalytic system
can harness natural sunlight as a light source. To our surprise,
sunlight could induce the reaction more efficiently than blue
LEDs. The photocatalytic reaction of 1a with 2a under sunlight
was completed in 4 h (eqn (1)).
A plausible reaction mechanism is illustrated in Scheme 2.
First, the photocatalyst 4 (IrIII) is excited by visible light
irradiation (blue LEDs or sunlight) to generate the excited
species *IrIII, which undergoes SET from alkoxymethyltrifluoro-
borate 1 to generate an alkoxymethyl radical and convert into
IrII. Luminescent quenching experiments support this SET
process (see the ESI†). In addition, the cyclic voltammogram
for organoborate 1a exhibited irreversible broad oxidation
waves at around +0.48 V (vs. Cp2Fe in MeCN) (see the ESI†).
These data suggest that alkoxymethylborates can be oxidized by
photoexcited *IrIII (cf. oxidation potential of *IrIII = +0.48 V vs.
Cp2Fe).13 The generated alkoxymethyl radical reacts with
electron-deficient alkene 2 to afford the C–C coupling adduct
30. Reduction of 30 by IrII (path a) followed by protonation by
the solvent gives the hydroalkoxymethylated product 3 and
regenerates the ground state IrIII. There is an alternative pathway,
where 30 reacts with 1 to give an alkoxymethyl radical (path b),
leading to the product 3 (radical propagation).
5 J. W. Tucker, J. M. R. Narayanam, P. S. Shah and C. R. J. Stephenson,
Chem. Commun., 2011, 47, 5040.
6 (a) T. Iwahama, S. Sakaguchi and Y. Ishii, Chem. Commun., 2000,
613; (b) K.-i. Yamada, Y. Yamamoto and K. Tomioka, J. Synth. Org.
Chem. Jpn., 2004, 62, 1158; (c) S.-Y. Zhang, F.-M. Zhang and Y.-Q. Tu,
Chem. Soc. Rev., 2011, 40, 1937.
7 For selected reports on synthesis of alkoxymethylborates, see:
(a) H. Stefani, R. Cella and A. S. Vieira, Tetrahedron, 2007,
63, 3623; (b) G. A. Molander and N. Ellis, Acc. Chem. Res., 2007,
40, 275; (c) S. Darses and J.-P. Genet, Chem. Rev., 2008, 108, 288.
8 (a) G. A. Molander and B. Canturk, Org. Lett., 2008, 10, 2135;
(b) G. A. Molander and F. Beaumard, Org. Lett., 2011, 13, 3948;
(c) G. A. Molander, V. Colombel and V. A. Braz, Org. Lett., 2011,
13, 1852; (d) G. A. Molander and S. R. Wisniewski, J. Am. Chem. Soc.,
2012, 134, 16856.
In conclusion, visible-light-driven photoredox catalysis pro-
vides a facile and efficient access to alkoxymethyl radicals via
1e-oxidation of alkoxymethyltrifluoroborates. The photocatalytic
hydroalkoxymethylation of electron-deficient alkenes has also
been developed. This new reaction is one of the methods for
functionalization of a carbon atom adjacent to the oxygen atom
of ethers. Further development of synthetically valuable photo-
catalytic radical transformations is a continuing effort in our
laboratory.
The financial support from the Japanese government
(Grant-in-Aid for Scientific Research: No. 23750174) is gratefully
acknowledged. Y. Y. also gratefully acknowledges financial
support from the GCOE program ‘‘Education and Research
Center for Emergence of New Molecular Chemistry’’.
9 C.-J. Li, Acc. Chem. Res., 2009, 42, 335.
10 The present aryloxymethylation is regarded as hydroxymethylation
because the aryloxy group can be deprotected by treatment with
cerium(IV) ammonium nitrate (CAN). T. Mikami, M. Harada and
K. Narasaka, Chem. Lett., 1999, 425.
11 Homocoupling products were apparently observed in photoredox-
catalyzed benzylation with benzylborates. To prevent this, an excess
amount of alkenes with respect to borates was used as in ref. 2e.
12 For selected reports on oxidative transformation of organoboronic
´
acids and a-silylethers, see: (a) H. C. Brown, N. C. Hebert and
C. H. Snyder, J. Am. Chem. Soc., 1961, 83, 3292; (b) G. Gutenberger,
E. Steckhan and S. Blechert, Angew. Chem., Int. Ed., 1998, 37, 660;
(c) J.-i. Yoshida, K. Kataoka, R. Horcajada and A. Nagaki, Chem. Rev.,
2008, 108, 2265 and references therein; ; (d) Y. Fujiwara, V. Domingo,
I. B. Seiple, R. Gianatassio, M. D. Bel and P. S. Baran, J. Am. Chem.
Soc., 2011, 133, 3292.
Notes and references
1 For recent reviews on photoredox catalysis, see: (a) T. P. Yoon,
M. A. Ischay and J. Du, Nat. Chem., 2010, 2, 527; (b) J. M. R.
Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 2011,
40, 102; (c) F. Tepl´y, Collect. Czech. Chem. Commun., 2011, 76, 859; 13 M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, Jr,
(d) J. W. Tucker and C. R. J. Stephenson, J. Org. Chem., 2012,
G. G. Malliaras and S. Bernhard, Chem. Mater., 2005, 17, 5712.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 7249--7251 7251