ChemComm
Communication
3 (a) C. A. Ramsden and H. L. Rose, J. Chem. Soc., Perkin Trans. 1, 1995,
615; (b) T. Dohi and Y. Kita, Chem. Commun., 2009, 2073; (c) L. F. Silva
Jr and B. Olofsson, Nat. Prod. Rep., 2011, 28, 1722; (d) M. Uyanik and
K. Ishihara, ChemCatChem, 2012, 4, 177; (e) R. Samanta and
A. P. Antonchick, Synlett, 2012, 809; ( f ) X. Ban, Y. Pan, Y. Lin,
S. Wang, Y. Du and K. Zhao, Org. Biomol. Chem., 2012, 10, 3606;
˜
(g) J. A. Souto, Z. Debora and K. Muniz, J. Am. Chem. Soc., 2012,
´
˜
134, 7242; (h) J. A. Souto, P. Becker, A. Lglesias and K. Muniz, J. Am.
Chem. Soc., 2012, 134, 15505; (i) L. Mao, Y. Li, T. Xiong, K. Sun and
¨
Q. Zhang, J. Org. Chem., 2013, 78, 733; ( j) C. Rboen, J. A. Souto,
Scheme 2 Proposed reaction mechanism.
´
˜
E. C. Escudero-Adan and K. Muniz, Org. Lett., 2013, 15, 1008.
4 (a) H. J. Kim, J. Kim, S. H. Cho and S. Chang, J. Am. Chem. Soc., 2011,
133, 16382; (b) A. A. Kantak, S. Potavathri, R. A. Barham,
K. M. Romano and B. DeBoef, J. Am. Chem. Soc., 2011, 133, 19960.
5 (a) C. J. Welch, J. Albaneze-Walker, W. R. Leonard, M. Biba,
J. DaSilva, D. Henderson, B. Laing, D. J. Mathre, S. Spencer, X. Bu
and T. Wang, Org. Process Res. Dev., 2005, 9, 198; (b) F. Qiu and
D. L. Norwood, J. Liq. Chromatogr. Relat. Technol., 2007, 30, 877.
6 (a) P. Finkbeiner and B. J. Nachtsheim, Synthesis, 2013, 979;
(b) M. Uyanik and K. Ishihara, ChemCatChem, 2012, 4, 177;
(c) T. Dohi and Y. Kita, Chem. Commun., 2009, 2073;
(d) V. V. Zhdankin and P. J. Stang, Chem. Rev., 2008, 108, 5299,
and references therein.
7 (a) T. Dohi, Y. Minamitsuji, A. Maruyama, S. Hirose and Y. Kita, Org.
Lett., 2008, 10, 3559; (b) T. Dohi, T. Nakae, Y. Ishikado, D. Kato and
Y. Kita, Org. Biomol. Chem., 2011, 9, 6899; (c) T. Dohi, D. Kato,
R. Hyodo, D. Yamashita, M. Shiro and Y. Kita, Angew. Chem., Int. Ed.,
2011, 50, 3784; (d) T. Dohi, N. Takenaga, K. Fukushima,
T. Uchiyama, D. Kato, M. Shiro, H. Fujioka and Y. Kita, Chem.
Commun., 2010, 46, 7697.
8 (a) M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda and K. Miyamoto,
J. Am. Chem. Soc., 2005, 127, 12244; (b) M. Uyanik, T. Yasui and
K. Ishihara, Angew. Chem., Int. Ed., 2010, 49, 2175; (c) M. Ngatimin,
R. Frey, C. Andrews, D. W. Lupton and O. E. Hutt, Chem. Commun.,
2011, 47, 11778; (d) W. Zhong, S. Liu, J. Yang, X. Meng and Z. Li, Org.
Lett., 2012, 14, 3336; (e) T. Dohi, N. Takenaga, T. Nakae, Y. Toyoda,
M. Yamasaki, M. Shiro, H. Fujioka, A. Maruyama and Y. Kita, J. Am.
Chem. Soc., 2013, 135, 4558.
9 (a) A. Moroda and H. Togo, Synthesis, 2008, 1257; (b) T. Dohi,
A. Maruyama, Y. Minamitsuji, N. Takenaga and Y. Kita, Chem.
Commun., 2007, 1224; (c) T. Dohi, N. Takenaga, K. Fukushima,
T. Uchiyama, D. Kato, M. Shiro, H. Fujioka and Y. Kita, Chem.
Commun., 2010, 46, 7697; (d) S. K. Alla, R. K. Kumar, P. Sadhu and
T. Punniyamurthy, Org. Lett., 2013, 15, 1334.
Pyrido[1,2-a]benzimidazole 2a was isolated in identical high
yields in both of the cases.
Based on literature reports,9,10 a plausible reaction pathway
was proposed as in Scheme 2. Initially, iodobenzene is oxidized
by peracetic acid, forming phenyliodine diacetate (PIDA) in the
presence of acetic acid. Then, nucleophilic substitution of the
aniline nitrogen on the iodine(III) center in PIDA forms inter-
mediate A which contains an electrophilic N-iodo moiety.
Subsequent nucleophilic attack of the pyridine nitrogen on
the aniline ring gives the intermediate B with concurrent
release of PhI and AcO–. Finally, deprotonic rearomatization
furnishes the desired product 2a, generating acetic acid and
water as only by-products during the whole process. The
released PhI enters the catalytic cycle again upon reoxidation
by peracetic acid acting as a stoichiometric oxidant.
In summary, we have developed a metal-free synthesis of
pyrido[1,2-a]benzimidazoles and benzo[d]imidazoles with high
step-efficiency and atom-economy. The reaction is catalyzed by
hypervalent iodine(III) species generated in situ from catalytic
amounts of PhI and peracetic acid which is used as a stoichio-
metric oxidant. The cycloamination reaction proceeded smoothly
at relatively low temperature within short reaction time (1.5 h). A
variety of functional groups are compatible with the reaction
conditions, providing the corresponding diversified N-hetero-
cycles in good to excellent yields. The pyrido[1,2-a]benzimidazole
derivatives with electron-withdrawing groups on the pyridine
moiety are inaccessible by similar Cu-catalyzed C–H cycloamina-
tion approaches.13,14 The features of scalability and free of metals
make this approach potentially valuable in drug synthesis.
We are grateful to the National Science Foundation of China
(21272233, 21202167 and 21072190) for financial support of
this work.
10 A. P. Antonchick, R. Samanta, K. Kulikov and J. Lategahn, Angew.
Chem., Int. Ed., 2011, 50, 8605.
11 (a) M. Sedic, M. Poznic, P. Gehrig, M. Scott, R. Schlapbach,
M. Hranjec, G. Karminski-Zamola, K. Pavelic and S. Kraljevic, Mol.
Cancer. Ther., 2008, 7, 2121; (b) M. Hranjec, I. Piantanida, M. Kralj,
´
L. Su˘man, K. Pavelı and G. Karminski-Zamola, J. Med. Chem., 2008,
51, 4899; (c) M. Hranjec, M. Kralj, I. Piantanida, M. Sedı, L. Su˘man,
K. Pavelı and G. Karminski-Zamola, J. Med. Chem., 2007, 50, 5696;
(d) S. K. Kotovskaya, Z. M. Baskakova, V. N. Charushin,
O. N. Chupakhin, E. F. Belanov, N. I. Bormotov, S. M. Balakhnin
and O. A. Serova, Pharm. Chem. J., 2005, 39, 574.
´
´
12 (a) S. V. Ryabukhin, A. S. Plaskon, D. M. Volochnyuk and A. A.
Tol-machev, Synthesis, 2007, 3155; (b) C. G. Yan, Q. F. Wang,
X. K. Song and J. Sun, J. Org. Chem., 2009, 74, 710; (c) K. Panda,
J. R. Suresh, H. Ila and H. Junjappa, J. Org. Chem., 2003, 68, 3498.
13 H. Wang, Y. Wang, C. Peng, J. Zhang and Q. Zhu, J. Am. Chem. Soc.,
2010, 132, 13217.
14 K.-S. Masters, T. R. M. Rauws, A. K. Yada, W. A. Herrebout and
B. U. W. Maes, Chem.–Eur. J., 2011, 17, 6315.
15 (a) K. W. Anderson, R. E. Tundel, T. Ikawa, R. A. Altman and
S. L. Buchwald, Angew. Chem., Int. Ed., 2006, 45, 6523;
(b) S. Hostyn, G. Van Baelen, G. L. F. Lemire and B. U. W. Maes,
Adv. Synth. Catal., 2008, 350, 2653; (c) Q. Shen, T. Ogata and
J. F. Hartwig, J. Am. Chem. Soc., 2008, 130, 6586.
16 (a) C. Zhu and Y. Wei, ChemSusChem, 2011, 4, 9513; (b) J. S. Peng,
M. Ye, C. J. Zong, F. Y. Hu, L. T. Feng, X. Y. Wang, Y. F. Wang and
C. X. Chen, J. Org. Chem., 2011, 76, 716; (c) G. Brasche and
S. L. Buchwald, Angew. Chem., Int. Ed., 2008, 47, 1932; (d) Q. Xiao,
W.-H. Wang, G. Liu, F.-K. Meng, J.-H. Chen, Z. Yang and Z.-J. Shi,
Chem.–Eur. J., 2009, 15, 7292; (e) J. Huang, Y. Miao, Y. Wang and
Q. Zhu, Chem.–Eur. J., 2012, 18, 13964.
Notes and references
1 (a) B. Xiao, T.-J. Gong, J. Xu, Z.-J. Liu and L. Liu, J. Am. Chem. Soc.,
2011, 133, 1466; (b) K. Sun, Y. Li, T. Xiong, J. Zhang and Q. Zhang,
J. Am. Chem. Soc., 2011, 133, 1694; (c) E. J. Yoo, S. Ma, T.-S. Mei, K. S. L.
Chan and J.-Q. Yu, J. Am. Chem. Soc., 2011, 133, 7652; (d) L. Wang,
W. Guo, X.-X. Zhao, X.-D. Xia and W.-J. Xiao, Org. Lett., 2012, 14, 740;
(e) T. Kawano, K. Hirano, T. Satoh and M. Miura, J. Am. Chem. Soc.,
2010, 132, 6900; ( f ) Y. Li, Y. Xie, R. Zhang, J. Kun, X. Wang and
C. Duan, J. Org. Chem., 2011, 76, 5444; (g) S. Guo, B. Qian, Y. Xie, C. Xia
and H. Huang, Org. Lett., 2011, 13, 522; (h) S. H. Cho, J. Y. Kim,
S. Y. Lee and S. Chang, Angew. Chem., Int. Ed., 2009, 48, 9127;
(i) J. Wang, J.-T. Hou, J. Wen, J. Zhang and X.-Q. Yu, Chem. Commun.,
2011, 47, 3652; ( j) J. Y. Kim, S. H. Cho, J. Joseph and S. Chang, Angew.
Chem., Int. Ed., 2010, 49, 9899.
2 (a) T.-S. Mei, X. Wang and J.-Q. Yu, J. Am. Chem. Soc., 2009,
131, 10806; (b) J. J. Neumann, S. Rakshit, T. Droge and F. Glorius,
Angew. Chem., Int. Ed., 2009, 48, 6892; (c) M. Wasa and J.-Q. Yu,
J. Am. Chem. Soc., 2008, 130, 14058.
¨
c
7354 Chem. Commun., 2013, 49, 7352--7354
This journal is The Royal Society of Chemistry 2013