Journal of the American Chemical Society
Page 4 of 6
Laquidara, J. M.; Sowa, J. R. Angew. Chem., Int. Ed. 2012, 51, 2106.
Supporting Information. The Supporting Information is
available free of charge on the ACS Publications website.
Experimental procedures and characterization data for all
compounds (PDF).
(h) Arai, N.; Sato, K.; Azuma, K.; Ohkuma, T. Angew. Chem., Int. Ed.
2012, 51, 12786. (i) Larionov, E.; Lin, L.; Guénée, L.; Mazet, C. J.
Am. Chem. Soc. 2014, 136, 16882.
1
2
3
4
5
6
7
8
(6) (a) Šmejkal, T.; Breit, B. Angew. Chem., Int. Ed. 2008, 47, 3946.
(b) Diab, L.; Gellrich, U.; Breit, B. Chem. Commun. 2013, 49, 9737.
(7) For reviews and selected examples, see: (a) Deutsch, C.; Krause,
N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916. (b) Lipshutz, B. H.
Synlett 2009, 4, 0509. (c) Appella, D. H.; Moritani, Y.; Shintani, R.;
Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9473.
(d) Moritani, Y.; Appella, D. H.; Jurkauskas, V.; Buchwald, S. L. J.
Am. Chem. Soc. 2000, 122, 6797. (e) Lipshutz, B. H.; Servesko, J. M.
Angew. Chem., Int. Ed. 2003, 42, 4789. (f) Hughes, G.; Kimura, M.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253. (g) Lipshutz, B.
H.; Servesko, J. M.; Taft, B. R. J. Am. Chem. Soc. 2004, 126, 8352.
(h) Lipshutz, B. H.; Servesko, J. M.; Petersen, T. B.; Papa, P. P.; Lovꢀ
er, A. A. Org. Lett. 2004, 6, 1273.
(8) For examples of chemoselective 1, 2ꢀreduction of α,βꢀunsaturated
carbonyl compounds, see: (a) Moser, R.; Bošković, Ž. V.; Crowe, C.
S.; Lipshutz, B. H. J. Am. Chem. Soc. 2010, 132, 7852. (b) Voigtritter,
K. R.; Isley, N. A.; Moser, R.; Aue D. H.; Lipshutz, B. H. Tetrahe-
dron 2012, 68, 3410. (c) Shi, S.ꢀL.; Wong, Z. L.; Buchwald, S. L.
Nature 2016, 532, 353. (d) Malkov, A. V. Angew. Chem., Int. Ed.
2010, 49, 9814. (e) Gallagher, B. D.; Taft, B. R.; Lipshutz, B. H. Org.
Lett. 2009, 11, 5374. (f) Waidmann, C. R.; Silks, L. A.; Wu, R.; Gorꢀ
don, J. C. Catal. Sci. Technol. 2013, 3, 1240.
AUTHOR INFORMATION
Corresponding Author
*sbuchwal@mit.edu
Notes
The authors declare no competing financial interest.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
Research reported in this publication was supported by the
National Institutes of Health (GM46059, GM122483). We
also thank the NIH for a supplemental grant for the purꢀ
chase of supercritical fluid chromatography (SFC) equipꢀ
ment (GM058160ꢀ17S1) and for a postdoctoral fellowship
for J. S. B. (GM112197). We acknowledge Michael Gribble
for helpful discussion on reaction mechanisms. We thank
Dr. Nicholas White for advice on this manuscript.
REFERENCES
(9) Zhou, Y.; Bandar, J. S.; Buchwald, S. L. J. Am. Chem. Soc. 2017,
139, 8126.
(1) (a) Brossi, A.; Grethe, G.; Teltel, S. Wildman, W. C.; Bailey, D.
T. J. Org. Chem. 1970, 35, 1100. (b) Welch, W. M.; Kraska, A. R.;
Sarges, R.; Koe, B. K. J. Med. Chem. 1984, 27, 1508. (c) Hyttel, J.;
Larsen, J. J. J. Neurochem. 1985, 44, 1615. (d) Nilvebrant, L.; Anꢀ
dersson, K.ꢀE.; Gillberg, P.ꢀG.; Stahl, M.; Sparf, B. Eur. J. Pharma-
col. 1997, 327, 195. (e) Andersson, P. G.; Schink, H. E.; Österlund,
K. J. Org. Chem. 1998, 63, 8067. (f) C. Selenski, T. R. R. Pettus, J.
Org. Chem. 2004, 69, 9196.
(2) For reviews and selected examples, see: (a) Zheng, C.; You, S.ꢀL.
Chem. Soc. Rev. 2012, 41, 2498. (b) Phillips, A. M. F.; Pombeiro, A.
J. L. Org. Biomol. Chem. 2017, 15, 2307. (c) Ouellet, S. G.; Tuttle, J.
B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32. (d) Yang,
J. W.; Hechavarria Fonseca, M. T.; List, B. Angew. Chem., Int. Ed.
2004, 43, 6660. (e) Mayer, S.; List, B. Angew. Chem., Int. Ed. 2006,
45, 4193.
(3) For selected examples of transitionꢀmetalꢀcatalyzed asymmetric
conjugated addition reactions, see: (a) Itooka, R.; Iguchi, Y.; Miyaura,
N. J. Org. Chem. 2003, 68, 6000. (b) Paquin, J.ꢀF.; Defieber, C.; Steꢀ
phenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127,
10850. (c) Hayashi, T.; Tokunaga, N.; Okamoto, K.; Shintani, R.
Chem. Lett. 2005, 34, 1480. (d) Bräse, S.; Höfener, S. Angew. Chem.,
Int. Ed. 2005, 44, 7879. (e) Nishimura, T.; Sawano, T.; Hayashi, T.
Angew. Chem., Int. Ed. 2009, 48, 8057. (f) Ibrahem, I.; Ma, G.;
Afewerki, S.; Córdova, A. Angew. Chem., Int. Ed. 2013, 52, 878.
(4) For selected examples of organocatalysis catalyzed asymmetric
conjugated addition, see: (a) Paras, N. A.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2002, 124, 7894. (b) Ooi, T.; Doda, K.; Maruoka, K.
J. Am. Chem. Soc. 2003, 125, 9022. (c) Wang, W.; Li, H.; Wang, J.
Org. Lett. 2005, 7, 1637. (d) Wu, F.; Li, H.; Hong, R.; Khan, J.; Liu,
X.; Deng, L. Angew. Chem., Int. Ed. 2006, 45, 4301. (e) Brandau, S.;
Landa, A.; Franzén, J.; Marigo, M.; Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2006, 45, 4305. (f) Chen, Y. K.; Yoshida, M.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2006, 128, 9328. (g) Lee, S.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2007, 129, 15438. (h) Akagawa, K.; Kudo,
K. Angew. Chem., Int. Ed. 2012, 51, 12786.
(10) For detailed information about the safe handling of diꢀ
methoxy(methyl)silane (DMMS), see the Supporting Information.
(11) For applications of BPE ligands, see: (a) Burk, M. J. Acc. Chem.
Res. 2000, 33, 363. (b) Lennon, I. C.; Pilkington, C. J. Synthesis 2003,
11, 1639. Also see reference 15 and references therein.
(12) β,βꢀDialkyl unsaturated carboxylic acids provided less satisfactoꢀ
ry results under the current conditions. When geranic acid was used,
the corresponding aldehyde was isolated in 58% yield, with 70% ee.
(13) The reactivity of αꢀsubstituted unsaturated acids was also examꢀ
ined. For instance, when the reduction reaction was conducted with
(E)ꢀ2ꢀmethylꢀ3ꢀphenylacrylic acid, the corresponding silyl enol ether
was obtained in 30% NMR yield, with 1.4:1 Z/E ratio.
(14) For applications of Josiphos ligands, see: (a) Blaser, H.ꢀU.;
Brieden, W.; Pugin, B.; Spindler, F.; Studer, M.; Togni, A. Top.
Catal. 2002, 19, 3. (b) Blaser, H.ꢀU.; Pugin, B.; Spindler, F.; Mejia,
E.; Togni, A. Josiphos Ligands: From Discovery to Technical Appliꢀ
cation; In Privileged Chiral Ligands and Catalyst. Zhou, Q.ꢀL., Eds.;
WileyꢀVCH: Weinheim, Germany, 2011; pp 93–136; and references
therein.
(15) For recent reviews and mechanistic studies, see: (a) Pirnot, M.
T.; Wang, Y.ꢀM.; Buchwald, S. L. Angew. Chem., Int. Ed. 2016, 55,
48. (b) Mohr, J.; Oestreich, M. Angew. Chem., Int. Ed. 2016, 55,
12148. (c) Jordan, A. J.; Lalic, G.; Sadighi, J. P. Chem. Rev. 2016,
116, 8318. (d) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garꢀ
za, V. J.; Krische, M. J. Science 2016, 354, 300. (e) Bandar, J. S.;
Pirnot, M. T.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 14812.
(f) Issenhuth, J.ꢀT.; Notter, F.ꢀP.; Dagorne, S.; Dedieu, A.; Belleminꢀ
Laponnaz, S. Eur. J. Inorg. Chem. 2010, 2010, 529. (g) Tobisch, S.
Chem. Eur. J. 2016, 22, 8290. (h) Dang, L.; Zhao, H.; Lin, Z.;
Marder, T. B. Organometallics 2007, 26, 2824. (i) Xi, Y.; Hartwig, J.
F. J. Am. Chem. Soc. 2017, 139, 12758. (j) Lee, J.; Radomkit, S.;
Torker, S.; del Pozo, J.; Hoveyda, A. H. Nat. Chem. 2018, 10, 99.
(16) DFT calculations indicate that 1,2ꢀhydrocupration to form the Cꢀ
enolate is more facile than 1,4ꢀhydrocupration to form the Oꢀenolate.
However, DFT also predicts that the Cꢀ and Oꢀenolate species are
similar in energy and can interconvert quickly.
(5) For reviews and selected examples, see: (a) Cahard, D.; Gaillard,
S.; Renaud, J.ꢀL. Tetrahedron Lett. 2015, 56, 6159. (b) Li, H.; Mazet,
C. Acc. Chem. Res. 2016, 49, 1232. (c) Tanaka, K.; Qiao, S.; Tobisu,
M.; Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 9870. (d)
Doppiu, A.; Salzer, A. Eur. J. Inorg. Chem. 2004, 2244. (e) Mantilli,
L.; Gérard, D.; Torche, S.; Besnard, C.; Mazet, C. Angew. Chem., Int.
Ed. 2009, 48, 5413. (f) Quintard, A.; Alexakis, A.; Mazet, C. Angew.
Chem., Int. Ed. 2011, 50, 2354. (g) Wu, R.; Beauchamps, M. G.;
(17) A disilyl ketene acetal species may also be a reactive intermediꢀ
ate. However, the barrier to hydrocupration of this acetal is predicted
to be significantly higher than for alternative pathways. Calculations
also indicate that subsequent elimination will preferentially afford the
E silyl enol ether product. See the Supporting Information for details.
4
ACS Paragon Plus Environment