Journal of the American Chemical Society
Communication
́ ́
M. J. Org. Chem. 2011, 76, 7141. (l) Prevost, S.; Dupre, N.; Leutzsch, M.;
providing 5a in 90% yield and 91.5:8.5 er. Various functional
groups were tolerated, and the methallylated products were
obtained with high enantioselectivities.
Wang, Q.; Wakchaure, V.; List, B. Angew. Chem., Int. Ed. 2014, 53, 8770.
For a review, see: (m) van Gemmeren, M.; Lay, F.; List, B. Aldrichimica
Acta 2014, 47, 3.
In conclusion, we have designed and synthesized a new chiral
BINOL-based thiophosphoramide catalyst, which possesses
TBDPS groups onto the ortho aromatic substituents and the
perfluorooctyl substituent on the sulfonyl group. 29Si and 31P
NMR monitoring reveals the characteristic feature of the
thiophosphoramide catalyst, acting as a strong Brønsted acid
even in the presence of excess silyl enol ethers, which cannot be
found in other related phosphoric acid analogues. The catalyst is
highly effective to the asymmetric Mukaiyama aldol reaction, and
the reaction proceeds with excellent diastereo- and enantiose-
lectivities. The catalyst can be applied to the asymmetric
Hosomi−Sakurai allylation, which has been considerably
challenging due to the low reactivity of allylsilanes.
(8) Cheon, C. H.; Yamamoto, H. Org. Lett. 2010, 12, 2476.
(9) TMS silyl enol ether of acetophenone is 103 times less reactive than
TMS silyl ketene acetal of methyl isobutylate, see: Mayr, H.; Kempf, B.;
Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.
(10) For reviews on chiral phosphoric acid catalysis, see: (a) Akiyama,
T. Chem. Rev. 2007, 107, 5744. (b) Terada, M. Chem. Commun. 2008,
4097. (c) Kampen, D.; Reisinger, C. M.; List, B. Top. Curr. Chem. 2010,
291, 395. (d) Terada, M. Synthesis 2010, 1929. (e) Yu, J.; Shi, F.; Gong,
L.-Z. Acc. Chem. Res. 2011, 44, 1156. (f) Rueping, M.; Nachtsheim, B. J.;
Ieawsuwan, W.; Atodiresei, I. Angew. Chem., Int. Ed. 2011, 50, 6706.
(g) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114,
9047.
(11) For 29Si and 31P NMR spectra, see the Supporting Information.
(12) Computational study on the pKa values of various chiral Brønsted
acids, see: (a) Kaupmees, K.; Tolstoluzhsky, N.; Raja, S.; Rueping, M.;
Leito, I. Angew. Chem., Int. Ed. 2013, 52, 11569. (b) Yang, C.; Xue, X.-S.;
Li, X.; Cheng, J.-P. J. Org. Chem. 2014, 79, 4340.
ASSOCIATED CONTENT
* Supporting Information
■
S
(13) TMS-A1 and TMS-C1 may exist in equilibrium with their isomers
(P-N-SiMe3, P-Se/O-SiMe3, and S-O-SiMe3).
Experimental details and analytical and crystallographic data
(CIF). The Supporting Information is available free of charge on
(14) In situ generation of silyl Lewis acids by the reaction of chiral
phosphoric acids with silyl compounds, see: (a) Rowland, E. B.;
Rowland, G. B.; Rivera-Otero, E.; Antilla, J. C. J. Am. Chem. Soc. 2007,
129, 12084. (b) Zamfir, A.; Tsogoeva, S. B. Org. Lett. 2010, 12, 188.
(c) Serdyuk, O. V.; Zamfir, A.; Hampel, F.; Tsogoeva, S. B. Adv. Synth.
Catal. 2012, 354, 3115.
(15) The reason for such a reactivity difference of the catalysts remains
unclear, and computational studies to rationalize this result are
underway.
(16) For the beneficial effect of bulky para substituents at the 3,3′-aryl
groups on enantioselectivity in chiral phosphoric acid catalysis, see:
(a) Cheng, X.; Goddard, R.; Buth, G.; List, B. Angew. Chem., Int. Ed.
2008, 47, 5079. (b) Cheng, X.; Vellalath, S.; Goddard, R.; List, B. J. Am.
Chem. Soc. 2008, 130, 15786. (c) Cheon, C. H.; Yamamoto, H. J. Am.
Chem. Soc. 2008, 130, 9246. (d) Jiao, P.; Nakashima, D.; Yamamoto, H.
Angew. Chem., Int. Ed. 2008, 47, 2411.
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research (no. 23225002), Advanced Catalytic Transformation
Program for Carbon Utilization, Nippon Pharmaceutical
Chemicals Co., Ltd, and Advance Electric Co., Inc.
(17) It is reported that the substituent on the sulfonyl group of the
phosphoramide catalyst has a significant influence on the yield but not
on the enantioselectivity; see: ref 10f and references therein.
(18) For usage of this base to differentiate the reaction pathway
between Lewis acid and Brønsted acid catalysis, see: (a) Mathieu, B.;
Ghosez, L. Tetrahedron 2002, 58, 8219. (b) Hara, K.; Akiyama, R.;
Sawamura, M. Org. Lett. 2005, 7, 5621.
(19) This result implies that our new catalyst has the potential to
enable the asymmetric anti-selective Mukaiyama aldol reaction.
(20) Treatment of a 1.5:1 mixture of E- and Z-1b with 5 mol % of
catalyst B4 at −100 °C for 1 h resulted in a 1:7.7 mixture of E- and Z-1b,
see the Supporting Information.
(21) For examples of Brønsted acid-catalyzed isomerization of silyl
enol ethers, see: (a) Deyine, A.; Dujardin, G.; Mammeri, M.; Poirier, J.-
M. Synth. Commun. 1998, 28, 1817. (b) Ishihara, K.; Nakamura, H.;
Nakamura, S.; Yamamoto, H. J. Org. Chem. 1998, 63, 6444. (c) Inanaga,
K.; Ogawa, Y.; Nagamoto, Y.; Daigaku, A.; Tokuyama, H.; Takemoto,
Y.; Takasu, K. Beilstein J. Org. Chem. 2012, 8, 658.
(22) For reviews on catalytic asymmetric allylation of carbonyl
compounds with allylsilanes, see: (a) Denmark, S. E.; Almstead, N. G. In
Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim,
Germany, 2000; Chapter 10. (b) Denmark, S. E.; Fu, J. Chem. Rev. 2003,
103, 2763. (c) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed.
REFERENCES
■
(1) For a seminal reference of Mukaiyama aldol reaction, see:
Mukaiyama, T.; Narasaka, K.; Banno, K. Chem. Lett. 1973, 1011.
(2) Ishihara, K.; Yamamoto, H. In Modern Aldol Reactions; Mahrwald,
R., Ed.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2, Chapter 2.
(3) Carreira, E. M.; Kvaerno, L. Classics in Stereoselective Synthesis;
Wiley-VCH: Weinheim, Germany, 2009.
(4) Denmark, S. E.; Fujimori, S. In Modern Aldol Reactions; Mahrwald,
R., Ed.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2, Chapter 7.
(5) (a) McGilvra, J. D.; Unni, A. K.; Modi, K.; Rawal, V. H. Angew.
Chem., Int. Ed. 2006, 45, 6130. (b) Gondi, V. B.; Hagihara, K.; Rawal, V.
H. Angew. Chem., Int. Ed. 2009, 48, 776.
(6) Zhuang, W.; Poulsen, T. B.; Jørgensen, K. A. Org. Biomol. Chem.
2005, 3, 3284.
(7) Asymmetric catalysis of chiral binaphthyl-derived disulfonimides
with silyl nucleophiles, see: (a) García-García, P.; Lay, F.; García-García,
P.; Rabalakos, C.; List, B. Angew. Chem., Int. Ed. 2009, 48, 4363.
(b) Ratjen, L.; García-García, P.; Lay, F.; Beck, M. E.; List, B. Angew.
Chem., Int. Ed. 2011, 50, 754. (c) Guin, J.; Rabalakos, C.; List, B. Angew.
Chem., Int. Ed. 2012, 51, 8859. (d) Mahlau, M.; García-García, P.; List, B.
Chem.Eur. J. 2012, 18, 16283. (e) Gandhi, S.; List, B. Angew. Chem.,
Int. Ed. 2013, 52, 2573. (f) Wang, Q.; Leutzsch, M.; van Gemmeren, M.;
List, B. J. Am. Chem. Soc. 2013, 135, 15334. (g) Ratjen, L.; van
Gemmeren, M.; Pesciaioli, F.; List, B. Angew. Chem., Int. Ed. 2014, 53,
8765. (h) Wang, Q.; van Gemmeren, M.; List, B. Angew. Chem., Int. Ed.
2014, 53, 13592. (i) Wang, Q.; List, B. Synlett 2015, 26, 807. (j) Guin, J.;
Wang, Q.; van Gemmeren, M.; List, B. Angew. Chem., Int. Ed. 2015, 54,
355. Asymmetric catalysis of chiral binaphthyl-derived disulfonimides
as Brønsted acids, see: (k) Chen, L.-Y.; He, H.; Chan, W.-H.; Lee, A. W.
2008, 47, 1560. (d) Yus, M.; Gonzal
Rev. 2011, 111, 7774.
́ ́
ez-Gomez, J. C.; Foubelo, F. Chem.
(23) Unsubstituted or γ-substituted allylsilanes did not react even at
room temperature.
(24) Kawasaki, M.; Li, P.; Yamamoto, H. Angew. Chem., Int. Ed. 2008,
47, 3795.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX