PMB protected (S)-3-hydroxybutanal 5. The phthalide
subunit present in 6 was to be constructed from iodide 7
by intramolecular carboalkoxylation.5 Iodide 7 would be
assembled via Sharpless asymmetric dihydroxylation6 of
alkene 8 followed by iodination.
accessed by benzylation of enolates,8 conjugate addition of
aryl organometallics,9 Negishi cross-coupling,10 or catalytic
asymmetric hydrogenation of R,β-unsaturated carbonyls.11
Each of these methods suffers from various drawbacks.7 Our
synthetic strategy sought to utilize methodology recently
developed by Molander et al. for the Suzuki cross-coupling
of enantiomerically enriched potassium β-trifluoroboratoa-
mide 97 with aryl bromide 10.
Scheme 1. Retrosynthetic Analysis
Scheme 2. Synthesis of Bromide 10
Construction of aryl bromide 10 began from commer-
cially available 3,5-dihydroxybenzoic acid 11 (Scheme 2).
Bromination,12 BOM protection, and adjustment of the
oxidation state gave aldehyde 12 in 61% yield over four
steps. Wittig reaction of 12 with ethyltriphenylphospho-
nium iodide afforded 10 in 85% yield as an inseparable
mixture of E/Z isomers. Isomerization of E/Z-10 using
catalytic Ru(CO)ClH(PPh3)3 in refluxing toluene13 pro-
vided isomerically pure 10 in 96% yield.
Trifluoroboratoamide 9 has been preparedby Molander
et al. by alkylation of amide 16 with iodide 15 and conversion
of the pinacol boronate species 17 to the trifluoroborate salt
9.7 Preparation of iodide 15 by alkylation of isopropyl-
pinacolboronate14 proved inefficient and required two dis-
tillations. We were pleased to find that the use of Brown’s
method15 provided 15 in sufficient purity simply by treatment
of boronate 14 with pinacol, washing the organic layer with
water, and subsequent concentration in vacuo (Scheme 3).
Alkylation of amide 1616 with 15 followed by conversion to
the trifluoroborate with KHF2 according to Molander’s
procedure afforded 9 in high yield and excellent diaster-
eoselectivity.7 The diastereoselectivity was >95:5 by 1H
NMR analysis of 17, and the values of the spectroscopic
data and optical rotation value for 9 compared well to the
literature values.7
Alkene 8 contains a synthetically challenging R-chiral
β-arylated ketone. There is a scarcity of direct methods for
the construction of such motifs,7 which are most commonly
(5) (a) Stille, J. K.; Wong, P. K. J. Org. Chem. 1975, 40, 532. (b)
Cowell, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4193. (c) Izumi, T.;
Itou, O.; Kodera, K. J. Chem. Technol. Biotechnol. 1996, 67, 89. (d)
Dang, Q.; Brown, B. S.; van Poelje, P. D.; Colby, T. J.; Erion, M. D.
Biorg. Med. Chem. Lett. 1999, 9, 1505. (e) Lindsell, W. E.; Palmer, D. D.;
Preston, P. N.; Rosair, G. M. Organometallics 2005, 24, 1119. (f) Hu, Y.;
€
Liu, J.; Lu, Z.; Luo, X.; Zhang, H.; Lan, Y.; Lei, A. J. Am. Chem. Soc.
2010, 132, 3153.
(6) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.;
Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968.
ꢀ
(7) (a) Molander, G. A.; Shin, I.; Jean-Gerard, L. Org. Lett. 2010, 12,
4384. (b) Hung Lee, J. C.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3,
894. (c) Smith, S. M.; Hoang, G. L.; Pal, R.; Bani Khaled, M. O.; Pelter,
L. S. W.; Cheng Zeng, X.; Takacs, J. M. Chem. Commun. 2012, 48, 12180.
(8) (a) Evans, D. A. In Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic Press: New York, 1994; Vol. 3, pp 1ꢀ100. (b) Lutomski, K. A.;
Meyers, A. I. In Asymmetric Synthesis, Morrison, J. D., Ed.; Academic
Press: New York, 1994; Vol. 3, pp 213ꢀ274.
(12) Durola, F.; Hanss, D.; Roesel, P.; Sauvage, J.-P.; Wenger, O. S.
Eur. J. Org. Chem. 2007, 125.
ꢀ
ꢀ
ꢀ
(13) Fustero, S.; Sanchez-Rosello, M.; Jimenez, D.; Sans-Cervera,
J. F.; Del-Pozo, C.; Acena, J. L. J. Org. Chem. 2006, 71, 2706.
(14) (a) Molander, G. A.; Febo-Ayala, W.; Ortega-Guerra, M. Org.
Lett. 2008, 73, 6000. (b) Smoum, R.; Rubinstein, A.; Srebnik, M. Bioorg.
Chem. 2003, 31, 464.
(9) Posner, G. H. In Organic Reactions; Wiley: New York, 1972; Vol.
19, pp 1ꢀ113.
(10) (a) Rilatt, I.; Caggiano, L.; Jackson, R. F. W. Synlett 2005, 2701.
(b) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am.
Chem. Soc. 1987, 109, 8056.
(15) (a) Soundararajan, R.; Li, G.; Brown, H. C. J. Org. Chem. 1996,
61, 100. (b) Roy, C. D.; Soundararajan, R.; Brown, H. C. Monatsh.
Chem. 2008, 139, 241.
(16) (a) Myers,A.G.;Yang,B.H.;Chen,H.;Gleason,J.L.J. Am. Chem.
Soc. 1994,116,9361.(b)Myers,A.G.;Yang,B.H.;Chen,H.;McKinstry,L.;
Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496.
(11) (a) Sugimura, T.; Uchida, T.; Watanabe, J.; Kubota, T.; Okamoto,
Y.; Misaki, T.; Okuyama, T. J. Catal. 2009, 262, 57. (b) Lu, W.-J.; Chen,
Y.-W.; Hou, X.-L. Angew. Chem., Int. Ed. 2008, 47, 10133. (c) Lu, S.-M.;
Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 8920. (d) Li, S.; Zhu, S.-F.;
Zhang, C.-M.; Song, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130, 8584.
B
Org. Lett., Vol. XX, No. XX, XXXX