Shimizu and co-workers reported the first asymmetric
copper-catalyzed ketone hydrogenation utilizing the chiral
ligand BDPP, but only ortho-substituted aryl and hetero-
aryl ketones provided good enantioselectivities.7 Beller
and co-workers reported a more general catalyst system
using copper acetate and monodentate binaphthopho-
sphepine ligands, but enantioselectivities generally did
not exceed 75%.8 In addition to the moderate enantios-
electivities, both methodologies required hydrogen pres-
sures (50 bar) generally outside the desired range for pro-
cess applications.
We sought to employ high throughput screening of com-
mercially available chiral phosphine ligands to develop a
catalyst system which would provide usable enantioselec-
tivities and operate at lower pressures. By virtue of the
design of our screening procedure (all reagents were mixed
without a catalyst precomplexation time and run at 20 bar
of H2 pressure),9 only those ligands that perform well
under our desired conditions were identified. Screening
of ∼60 chiral phosphine ligands under conditions similar
to those of Shimizu and Beller for hydrogenation of
acetophenone led to the identification of several active
and selective complexes (Figure 1).
Given the precedent for asymmetric ketone reduction
with BIPHEP- and SEGPHOS-ligated copper hydride
species, their activity, and that of closely related ligands,
under the current conditions is not surprising.5d Unfortu-
nately, commercially available variants provided little
Figure 1. Ligands identified by parallel screening.
increase in selectivity. Despite the lower selectivity ob-
served, Me-BoPhoz emerged as an attractive candidate for
development due to its modular synthesis, relatively high
reactivity even at lower base loadings, and excellent sta-
bility.10 Attempts to increase selectivity using the parent ligand
through variation of additives and conditions were unsuc-
cessful.9 Of 33 phosphines tested, tris(3,5-xylyl)phosphine
(5) For examples of Cu-catalyzed hydrosilylation with homogeneous
Cu sources, see: (a) Lipshutz, B. H.; Noson, K.; Chrisman, W. J. Am.
Chem. Soc. 2001, 123, 12917. (b) Sirol, S.; Courmarcel, J.; Mostefai, N.;
Riant, O. Org. Lett. 2001, 3, 4111. (c) Lipshutz, B. H.; Lower, A.; Noson,
K. Org. Lett. 2002, 4, 4045. (d) Lipshutz, B. H.; Noson, K.; Chrisman,
W.; Lower, A. J. Am. Chem. Soc. 2003, 125, 8779. (e) Lee, D.-W.; Yun, J.
Tetrahedron Lett. 2004, 45, 5415. (f) Lipshutz, B. H.; Frieman, B. A.
Angew. Chem., Int. Ed. 2005, 44, 6345. (g) Lipshutz, B. H.; Lower, A.;
Kucejko, R. J.; Noson, K. Org. Lett. 2006, 8, 2969. (h) Issenhuth, J. T.;
Dagorne, S.; Bellemin-Laponnaz, S. Adv. Synth. Catal. 2006, 348, 1991.
(i) Mostefai, N.; Sirol, S.; Courmarcel, J.; Riant, O. Synthesis 2007, 1265.
(j) Lipshutz, B. H. Synlett 2009, 509. (k) Zhang, X.-C.; Wu, Y.; Yu, F.;
Wu, F.-F.; Wu, J.; Chan, A. S. C. Chem.;Eur. J. 2009, 15, 5888. (l)
Junge, K.; Wendt, B.; Addis, D.; Zhou, S.; Das, S.; Beller, M. Chem.;
Eur. J. 2010, 16, 68. (m) Zhang, X.-C.; Wu, F.-F.; Li, S.; Zhou, J.-N.;
Wu, J.; Li, N.; Fang, W.; Lam, K. H.; Chan, A. S. C. Adv. Synth. Catal
2011, 353, 1457.
Table 1. BoPhoz Ligand Screening
(6) For examples of Cu-catalyzed hydrosilylation with heteroge-
neous Cu sources, see: (a) Lipshutz, B. H.; Frieman, B. A.; Tomaso,
A. E., Jr. Angew. Chem., Int. Ed. 2006, 45, 1259. (b) Kantam, M. L.;
Laha, S.; Yadav, J.; Likhar, P. R.; Sreedhar, B.; Choudary, B. M. Adv.
Synth. Catal. 2007, 349, 1797. (c) Kantam, M. L.; Laha, S.; Yadav, J.;
Likhar, P. R.; Sreedhar, B.; Jha, S.; Bhargava, S.; Udayakiran, M.;
Jagadeesh, B. Org. Lett. 2008, 10, 2979. (d) Kantam, M. L.; Yadav, J.;
Laha, S.; Srinivas, P.; Sreedhar, B.; Figueras, F. J. Org. Chem. 2009, 74,
4608.
(7) (a) Shimizu, H.; Igarashi, D.; Kuriyama, W.; Yusa, Y.; Sayo, N.;
Saito, T. Org. Lett. 2007, 9, 1655. (b) Shimizu, H.; Nagano, T.; Sayo, N.;
Saito, T.; Ohshima, T.; Mashima, K. Synlett 2009, 3143.
(8) Junge, K.; Wendt, B.; Addis, D.; Zhou, S.; Das, S.; Fleischer, S.;
Beller, M. Chem.;Eur. J. 2011, 17, 101.
(9) See the Supporting Information
(10) (a) Boaz, N. W.; Debenham, S. D. Phosphino-Aminopho-
sphines, Catalyst Complexes and Enantioselective Hydrogenation.
WO 02/026750 A3, April 4, 2002. (b) Boaz, N. W.; Debenham, S. D.;
Mackenzie, E. B.; Large, S. E. Org. Lett. 2002, 4, 2421. (c) Boaz, N. W.;
Debenham, S. D.; Large, S. E.; Moore, M. K. Tetrahedron: Asymmetry
2003, 14, 3575. (d) Boaz, N. W.; Ponasik, J. A., Jr.; Large, S. E.
Tetrahedron: Asymmetry 2005, 16, 2063. (e) Li, X.; Jia, X.; Xu, L.;
Kok, S. H. L.; Yip, C. W.; Chan, A. S. C. Adv. Synth. Catal. 2005, 347,
1904. (f) Deng, J.; Duan, Z.-C.; Huang, J.-D.; Hu, X.-P.; Wang, D.-Y.;
Yu, S.-B.; Xu, X.-F.; Zheng, Z. Org. Lett. 2007, 9, 4825.
conv
(%)a
er
entry
R
Ar
(R:S)b
1
Me
Et
Ph
Ph
Ph
3a
3b
3c
3d
3e
3f
100
98
79:21
72:28
67:33
75:25
67:33
À
2
3
H
16
4
Me
Me
Me
Me
Et
4-CF3C6H4
52
5
4-F-C6H4
76
6
3,5-diCF3-C6H3
4-CH3C6H4
0
7
3g
3h
3i
100
100
100
100
53
79:21
74:26
68:32
91:9
8
4-CH3C6H4
9
Me
Me
H
4-OMe-C6H4
10
11
12
13
14
3,5-diMe-C6H3
3,5-diMe-C6H3
3,5-diMe-C6H3
3,5-diMe-4-OMe-C6H2
3,5-tBu-4-OMe-C6H2
3j
3k
3l
57:43
80:20
67:33
89:11
Et
76
Me
Me
3m
3n
100
43
a Determined by comparison of relative integration by HPLC of
alcohol to ketone. b Determined by HPLC analysis.
Org. Lett., Vol. 15, No. 17, 2013
4561