Communication
Lett. 2009, 11, 1083–1086; d) F. Silva, M. Reiter, R. Mills-Webb, M. Sawicki,
D. Klär, N. Bensel, A. Wagner, V. Gouverneur, J. Org. Chem. 2006, 71,
8390–8394; e) M. Biagetti, F. Bellina, A. Carpita, S. Viel, L. Mannina, R.
Rossi, Eur. J. Org. Chem. 2002, 1063–1076; f) Y. Wang, D. J. Burton, J. Org.
Chem. 2006, 71, 3859–3862; g) P.-P. Tian, S.-H. Cai, Q.-J. Liang, X.-Y. Zhou,
Y.-H. Xu, T.-P. Loh, Org. Lett. 2015, 17, 1636–1639; h) H. Wang, X. Han, X.
Lu, Tetrahedron 2013, 69, 8626–8631; i) P. Kočovský, J.-E. Bäckvall, Chem.
Eur. J. 2015, 21, 36–56; j) Z. She, D. Niu, L. Chen, M. A. Gunawan, X.
Shanja, W. H. Hersh, Y. Chen, J. Org. Chem. 2012, 77, 3627–3633.
of readily available materials, unactivated alkenes, and good
functional-group tolerance. We believe this protocol would find
potential applications in natural product synthesis and medici-
nal chemistry.
Supporting Information (see footnote on the first page of this
article): General methods, procedures, and NMR spectra.
[7]
a) R. C. Larock, M. J. Doty, X. Han, J. Org. Chem. 1999, 64, 8770–8779; b)
G. Dai, R. C. Larock, J. Org. Chem. 2002, 67, 7042–7047; c) G. Dai, R. C.
Larock, Org. Lett. 2001, 3, 4035–4038; d) Q. Huang, R. C. Larock, J. Org.
Chem. 2003, 68, 980–988.
Acknowledgments
The authors thank the National Nature Science Foundation of
China (NSFC) (grant numbers 21172076, 21202046, and
21420102003), the Fundamental Research Funds for the Central
Universities (grant number 2015Y001), and the Doctoral Fund
of the Department of Education of Guangdong (grant number
sybzzxm201310) for financial support.
[8]
[9]
a) K. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 9, 1407–1409; b) K. Ueura,
T. Satoh, M. Miura, J. Org. Chem. 2007, 72, 5362–5367; c) C. Allais, T.
Constantieux, J. Rodriguez, Chem. Eur. J. 2009, 15, 12945–12948.
For select reviews on oxygen as the sole oxidant, see: a) W. Wu, H. Jiang,
Acc. Chem. Res. 2012, 45, 1736–1748; b) T. Punniyamurthy, S. Velusamy,
J. Iqbal, Chem. Rev. 2005, 105, 2329–2364; c) D. I. Enache, J. K. Edwards,
P. Landon, E. B. Solsona, A. F. Carley, A. A. Herzing, M. Watanabe, C. J.
Kiely, D. W. Knight, G. J. Hutchings, Science 2006, 311, 362–365; d) J.
Piera, J. E. Bäckvall, Angew. Chem. Int. Ed. 2008, 47, 3506–3523; Angew.
Chem. 2008, 120, 3558–3576, and references cited therein.
Keywords: Synthetic methods · Palladium · Oxygen
heterocycles · Heck reaction · Elimination · Natural products
[10]
[11]
a) R. F. Heck, Acc. Chem. Res. 1979, 12, 146–151; b) R. F. Heck, Org. React.
1982, 27, 345–390.
[1] For select reviews on metal-catalyzed cascade reactions, see: a) J.-C.
Waslike, S. J. Obrey, R. T. Bake, G. C. Bazan, Chem. Rev. 2005, 105, 1001–
1020; b) L. F. Tietze, Chem. Rev. 1996, 96, 115–136; c) K. C. Nicolaou, D. J.
Edmonds, P. G. Bulger, Angew. Chem. Int. Ed. 2006, 45, 7134–7186; Angew.
Chem. 2006, 118, 7292–7344; d) A. Dondoni, A. Massi, Acc. Chem. Res.
2006, 39, 451–463; e) A. Dömling, Chem. Rev. 2006, 106, 17–89.
[2] For select reviews on Pd-catalyzed cascade reactions, see: a) H.-W. Früh-
auf, Chem. Rev. 1997, 97, 523–596; b) I. Ojima, M. Tzamarioudaki, Z. Li,
R. J. Donovan, Chem. Rev. 1996, 96, 635–662; c) H. Claviera, H. Pellissier,
Adv. Synth. Catal. 2012, 354, 3347–3403.
[3] For select examples of N-containing nucleopalladation, see: a) A. Lei, X.
Lu, Org. Lett. 2000, 2, 2699–2702; b) X.-F. Xia, L.-L. Zhang, X.-R. Song, X.-
Y. Liu, Y.-M. Liang, Org. Lett. 2012, 14, 2480–2483; c) R. Alvarez, C. Martí-
nez, C. Madich, J. G. Denis, J. M. Aurrecoechea, A. R. Lera, Chem. Eur. J.
2010, 16, 12746–12753; d) B. Yao, Q. Wang, J. Zhu, Angew. Chem. Int. Ed.
2012, 51, 5170–5174; Angew. Chem. 2012, 124, 5260–5264; e) M. M. D.
Pramanik, R. Kant, N. Rastogi, Tetrahedron 2014, 70, 5214–5220; f) Q.
Dinga, J. Wu, Adv. Synth. Catal. 2008, 350, 1850–1854.
[4] For select examples of carbo-triggering nucleopalladation, see: a) C.
Feng, T.-P. Loh, J. Am. Chem. Soc. 2010, 132, 17710–17712; b) I. Naka-
mura, G. B. Bajracharya, Y. Mizushima, Y. Yamamoto, Angew. Chem. Int.
Ed. 2002, 41, 4328–4331; Angew. Chem. 2002, 114, 4504–4507; c) M.
Pawliczek, T. F. Schneider, C. Maaß, D. Stalke, D. B. Werz, Angew. Chem.
Int. Ed. 2015, 54, 4119–4123; Angew. Chem. 2015, 127, 4192–4196; d) J.
Wallbaum, R. Neufeld, D. Stalke, D. B. Werz, Angew. Chem. Int. Ed. 2013,
52, 13243–13246; Angew. Chem. 2013, 125, 13485–13488; e) X. Tong, M.
Beller, M. K. Tse, J. Am. Chem. Soc. 2007, 129, 4906–4907; f) Y. Deng,
A. K. Å. Persson, J.-E. Bäckvall, Chem. Eur. J. 2012, 18, 11498–11523; g) I.
Dorange, J. Löfstedt, K. Närhi, J. Franzén, J.-E. Bäckvall, Chem. Eur. J. 2003,
9, 3445–3449.
[5] For select examples of halogen-triggering nucleopalladation, see: a) S.
Ma, X. Lu, J. Org. Chem. 1991, 56, 5120–5125; b) X. Lu, S. Ma, J. Org.
Chem. 1993, 58, 1245–1250; c) X. Xie, X. Lu, Y. Liu, W. Xu, J. Org. Chem.
2001, 66, 6545–6550; d) H. Jiang, Y. Gao, W. Wu, Y. Huang, Org. Lett.
2013, 15, 238–241; e) P. Zhou, M. Zheng, H. Jiang, X. Li, C. Qi, J. Org.
Chem. 2011, 76, 4759–4763; f) J. Li, W. Yang, S. Yang, L. Huang, W. Wu,
Y. Sun, H. Jiang, Angew. Chem. Int. Ed. 2014, 53, 7219–7222; Angew.
Chem. 2014, 126, 7347–7350; g) P. Zhao, D. Chen, G. Song, K. Han, X. Li,
J. Org. Chem. 2012, 77, 1579–1584; h) Z. Zhang, L. Ouyang, W. Wu, J. Li,
Z. Zhang, H. Jiang, J. Org. Chem. 2014, 79, 10734–10742; i) G. Yin, G. Liu,
Angew. Chem. Int. Ed. 2008, 47, 5442–5445; Angew. Chem. 2008, 120,
5522–5525.
For recent selected examples of the Heck reaction, see: a) E. W. Werner,
T.-S. Mei, A. J. Burckle, M. S. Sigman, Science 2012, 338, 1455–1458; b) S.
Arai, T. Sato, Y. Koike, M. Hayashi, A. Nishida, Angew. Chem. Int. Ed. 2009,
48, 4528–4531; Angew. Chem. 2009, 121, 4598–4601; c) C. Pi, Y. Li, X.-L.
Cui, H. Zhang, Y. Han, Y. Wu, Chem. Sci. 2013, 4, 2675–2679; d) E. Alza,
L. Laraia, B. M. Ibbeson, S. Collins, W. R. J. D. Galloway, J. E. Stokes, A. R.
Venkitaraman, D. R. Spring, Chem. Sci. 2015, 6, 390–396; e) C. M. McMa-
hon, E. J. Alexanian, Angew. Chem. Int. Ed. 2014, 53, 5974–5977; Angew.
Chem. 2014, 126, 6084–6087; f) L. Qin, X. Ren, Y. Lu, Y. Li, J. Zhou, Angew.
Chem. Int. Ed. 2012, 51, 5915–5919; Angew. Chem. 2012, 124, 6017–6021;
g) E. W. Werner, M. S. Sigman, J. Am. Chem. Soc. 2010, 132, 13981–13983;
h) B. Karimi, D. Enders, Org. Lett. 2006, 8, 1237–1240; i) J.-H. Li, D.-P.
Wang, Y.-X. Xie, Tetrahedron Lett. 2005, 46, 4941–4944; j) X. Zhou, J. Luo,
J. Liu, S. Peng, G.-J. Deng, Org. Lett. 2011, 13, 1432–1435; k) C.-S. Guo, Y.-
H. Du, Z.-Z. Huang, Chem. Commun. 2011, 47, 3995–3997.
[12]
a) A. Lumbroso, L. M. Cooke, B. Breit, Angew. Chem. Int. Ed. 2013, 52,
1890–1932; Angew. Chem. 2013, 125, 1942–1986; b) N. Ahlsten, A. B.
Gómez, B. Martín-Matute, Angew. Chem. Int. Ed. 2013, 52, 6273–6276;
Angew. Chem. 2013, 125, 6393–6396; c) A. Quintard, T. Constantieux, J.
Rodriguez, Angew. Chem. Int. Ed. 2013, 52, 12883–12887; Angew. Chem.
2013, 125, 13121–13125; d) R. G. Deluca, M. S. Sigman, Org. Lett. 2013,
15, 92–95; e) G. Wang, A. Jimtaisong, R. L. Luck, Organometallics 2004,
23, 4522–4525; f) G. M. Shibuya, J. S. Kanady, C. D. Vanderwal, J. Am.
Chem. Soc. 2008, 130, 12514–12518; g) P. Colbon, J. Ruan, M. Purdie, K.
Mulholland, J. Xiao, Org. Lett. 2011, 13, 5456–5459; h) T. R. Hoye, H. Zhao,
Org. Lett. 1999, 1, 1123–1125.
[13]
a) X. Li, W. Song, W. Tang, J. Am. Chem. Soc. 2013, 135, 16797–16800; b)
S. Krautwald, M. A. Schafroth, D. Sarlah, E. M. Carreira, J. Am. Chem. Soc.
2014, 136, 3020–3023; c) J. Y. Hamilton, D. Sarlah, E. M. Carreira, J. Am.
Chem. Soc. 2014, 136, 3006–3009; d) J. Y. Hamilton, D. Sarlah, E. M. Car-
reira, J. Am. Chem. Soc. 2013, 135, 994–997; e) M. A. Schafroth, D. Sarlah,
S. Krautwald, E. M. Carreira, J. Am. Chem. Soc. 2012, 134, 20276–20278;
f) M. Roggen, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 5568–5571;
Angew. Chem. 2011, 123, 5683–5686; g) D. Banerjee, K. Junge, M. Beller,
Angew. Chem. Int. Ed. 2014, 53, 13049–13053; Angew. Chem. 2014, 126,
13265–13269; h) R. Shibuya, L. Lin, Y. Nakahara, K. Mashima, T. Ohshima,
Angew. Chem. Int. Ed. 2014, 53, 4377–4381; Angew. Chem. 2014, 126,
4466–4470.
[14]
a) E. W. Werner, T.-S. Mei, A. J. Burckle, M. S. Sigman, Science 2012, 338,
1455–1458; b) M. Vellakkaran, M. M. S. Andappan, N. Kommu, Green
Chem. 2014, 16, 2788–2797; c) L.-C. Kao, F. G. Stakem, B. A. Patel, R. F.
Heck, J. Org. Chem. 1982, 47, 1267–1277; d) A. Bunescu, Q. Wang, J. Zhu,
Angew. Chem. Int. Ed. 2015, 54, 3132–3135; Angew. Chem. 2015, 127,
3175–3178; e) Y. Yu, U. K. Tambar, Chem. Sci. 2015, 6, 2777–2781.
[6] For select examples of O-containing nucleopalladation, see: a) N. Momi-
yama, M. W. Kanan, D. R. Liu, J. Am. Chem. Soc. 2007, 129, 2230–2231; b)
L. Zhao, X. Lu, Angew. Chem. Int. Ed. 2002, 41, 4343–4345; Angew. Chem.
2002, 114, 4519–4521; c) C. Martínez, R. Alvarez, J. M. Aurrecoechea, Org.
Eur. J. Org. Chem. 2016, 663–667
666
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim