ChemComm
Communication
4 F. Bohlmann and D. Rahtz, Chem. Ber., 1957, 90, 2265.
5 (a) M. C. Bagley, J. W. Dale and J. Bower, Synlett, 2001, 1149;
(b) M. C. Bagley, C. Brace, J. W. Dale, M. Ohnesorge, N. G. Philips,
X. Xiong and J. Bower, J. Chem. Soc., Perkin Trans. 1, 2002, 1663;
(c) M. C. Bagley, J. W. Dale and J. Bower, Chem. Commun., 2002, 1682;
(d) M. C. Bagley, D. D. Hughes, H. M. Sabo, P. H. Taylor and X. Xiong,
Synlett, 2003, 1443; (e) X. Xiong, M. C. Bagley and K. Chapaneri,
Tetrahedron Lett., 2004, 45, 6121; ( f ) M. C. Bagley, K. Chapaneri,
J. W. Dale, X. Xiong and J. Bower, J. Org. Chem., 2005, 70, 1389.
6 For an informative account, see: M. C. Bagley, C. Glover and
E. A. Merritt, Synlett, 2007, 2459.
Scheme 3 Synthesis of the pyridine core of cyclothiazomycin.
7 For an in depth review, see: A. Duschek and S. F. Kirsch, Angew.
Chem., Int. Ed., 2011, 50, 1524.
76 structurally distinct actinomycete thiopeptide antibiotics.13 Many
thiopeptides contain the 2,3,6-trisubstituted pyridine core and several
groups have developed different synthetic routes to this moiety.5f,14
Our strategy was mainly based on just bringing the corresponding
enamine and allylic alcohol together under the conditions of
the newly developed methodology. Thus, the required enamine
6 (racemic) and the allylic alcohol 7 were prepared15 and then
reacted in the presence of IBX in DMSO at 50 1C for 4 h to give
the pyridine core (racemic) of cyclothiazomycin 8 (Scheme 3).12
In conclusion, a direct, one-pot and metal free synthesis of
functionalized pyridines has been developed for the first time
via the IBX mediated reaction of readily available b-enamino esters
and allylic alcohols under open air. The methodology afforded
2-substituted nicotinic acids, tetra substituted unsymmetrical
pyridines and precursors of azafluorenones. The use of a b-enamino
amide afforded the racemic pyridine core of cyclothiazomycin.
The methodology may find wide applications in the construction
of a pyridine based library of small molecules for medicinal uses
or natural product synthesis.
´
´
8 (a) A. S. Rebstock, F. Mongin, F. Trecourt and G. Queguiner, Tetra-
´
hedron, 2003, 59, 4973; (b) A. S. Rebstock, F. Mongin, F. Trecourt and
´
G. Queguiner, Tetrahedron, 2004, 60, 2181.
9 (a) J. Koyama, I. Morita, N. Kobayashi, T. Osakai, Y. Usuki and
M. Taniguchi, Bioorg. Med. Chem. Lett., 2005, 15, 1079;
(b) G. A. Kraus and A. Kempema, J. Nat. Prod., 2010, 73, 1967.
10 (a) A. Hantzsch, Ber. Dtsch. Chem. Ges., 1881, 14, 1637; (b) A. Hantzsch,
Justus Liebigs Ann. Chem., 1882, 215, 1; (c) D. M. Stout and A. I. Meyers,
Chem. Rev., 1982, 82, 223; (d) U. Eisner and J. Kuthan, Chem. Rev.,
1972, 72, 1.
11 (a) T. Zoller, P. Breuilles, D. Uguen, A. De Cian and J. Fischer,
Tetrahedron Lett., 1999, 40, 6253; (b) While IBX mediated aromatiza-
tion of 1,4-dihydropyridine has been reported earlier (see:
J. S. Yadav, B. V. S. Reddy, A. K. Basak, G. Baishya and
A. V. Narsaiah, Synthesis, 2006, 451) a similar reaction is unlikely
in the present case considering the fact that only 1.2 equivalents of
IBX were used (we thank reviewers for pointing out this). Thus
aromatization of B was aided by the aerial oxygen, see for example:
L. Shen, S. Cao, J. Wu, J. Zhang, H. Li, N. Liuand and X. Qian, Green
Chem., 2009, 11, 1414.
12 (a) A. Okabe, A. Ito, K. Okumura and C. G. Shin, Chem. Lett., 2001,
380; (b) C. G. Shin, A. Okabe, A. Ito and Y. Yonezawa, Bull. Chem. Soc.
Jpn., 2002, 75, 1583; (c) M. C. Bagley and X. Xiong, Org. Lett., 2004,
6, 3401; (d) For a recent and elegant synthesis, see: Y. Zou, Q. Liu
and A. Deiters, Org. Lett., 2011, 13, 4352.
NRG and DV thank CSIR, New Delhi, India, for research
fellowships. The authors thank DRILS for analytical support.
13 M. C. Bagley, J. W. Dale, E. A. Merritt and X. Xiong, Chem. Rev., 2005,
105, 68.
14 (a) R. A. Hughes, S. P. Thompson, L. Alcaraz and C. J. Moody, J. Am.
Chem. Soc., 2005, 127, 15644; (b) K. C. Nicolaou, B. S. Safina, M. Zak,
A. A. Estrada and S. H. Lee, Angew. Chem., Int. Ed., 2004, 43, 5087;
(c) M. C. Bagley, K. E. Bashford, C. L. Hesketh and C. J. Moody,
J. Am. Chem. Soc., 2000, 122, 3301.
15 Compound 6 was prepared by treating tert-butyl-2-methyl-3,5-dioxo-
pyrrolidine-1-carboxylate with NH4OAc whereas 7 was prepared by
reacting ethyl-2-formylthiazole-4-carboxylate with vinyl magnesium
bromide. For a detailed procedure, see ESI†.
Notes and references
1 (a) M. Z. Chen and G. C. Micalizio, J. Am. Chem. Soc., 2012,
134, 1352, and references therein; (b) G. D. Henry, Tetrahedron,
2004, 60, 6043; (c) R. Murugan and E. F. Scriven, J. Heterocycl. Chem.,
2000, 37, 451.
2 L. F. Tietze, Chem. Rev., 1996, 96, 115.
3 K. Tsuda, Y. Satch, N. Ikekawa and H. Mishima, J. Org. Chem., 1956,
21, 800.
c
7928 Chem. Commun., 2013, 49, 7926--7928
This journal is The Royal Society of Chemistry 2013