DOI: 10.1039/C3CC45404E
Page 3 of 3
ChemComm
45 European Union’s Framework Program (FP7/2007-2013) ERC
Advanced Grant Agreement no 267426. M. J. L. thanks the
EPSRC for a DTA studentship.
Notes and references
1
a) E. R. Kay and D. A. Leigh, Pure Appl. Chem., 2008, 80, 17; b) J.
A. Faiz, V. Heitz and J.-P. Sauvage, Chem. Soc. Rev., 2009, 38, 422;
c) L. Fang, M. A. Olson, D. Benı´tez, E. Tkatchouk, W. A. Goddard
III and J. F. Stoddart, Chem. Soc. Rev., 2010, 39, 17; d) M. D.
Lankshear and P. D. Beer, Acc. Chem. Res., 2007, 40, 657; M. S.
Vickers and P. D. Beer, Chem. Soc. Rev., 2007, 36, 211; e) S. J.
Loeb, Chem. Soc. Rev., 2007, 36, 226-235
50
55
60
65
70
75
80
2
3
a) G. T. Spence and P. D. Beer, Acc. Chem. Res., 2013, 46, 2, 571–
586; b) M. J. Chmielewski, J. J. Davis, P. D. Beer, Org. Biomol.
Chem., 2009, 7, 415-424.
a) J. P. Sauvage, Acc. Chem. Res., 1990, 23, 319; b) J. C. Chambron,
J. P. Collin, V. Heitz, D. Jouvenot, J. M. Kern, P. Mobian, D.
Pomeranc and J. P. Sauvage, Eur. J. Org. Chem., 2004, 1627; c) J. F.
Stoddart, in Templates in Chemistry II, Springer, Berlin/ Heidelberg,
2005, pp. 227–240; d) J. E. Beves, B. A. Blight, C. J. Campbell, D.
A. Leigh and R. T. McBurney, Angew Chem Int Ed, 2011, 50, 9260-
9327; e) J. D. Crowley, S. M. Goldup, A-L. Lee, D. A. Leigh and R.
T. McBurney Chem. Soc. Rev., 2009, 38, 1530-1541.
We have recently reported lanthanide appended rotaxanes, prepared
by post-rotaxane formation. See C. Allain, P. D. Beer, S. Faulkner,
M. W. Jones, A. M. Kenwright, N. L. Kilah, R. C. Knighton, T. J.
Sorensen and M. Tropiano, Chem. Sci. 2013, 4, 489-493. Hoffart
and Loeb have used pyridine N-oxide at the terminus of rotaxanes for
the construction of MOFs. See D. J. Hoffart and S. J. Loeb, Angew.
Chem. Int. Ed., 2005, 44, 901 –904.
a) S. Faulkner, L. S. Natrajan, W. S. Perry and D. Sykes, Dalton
Trans., 2009, 0, 3890-3899; b) C. Allain and S. Faulkner, Future
Med. Chem., 2010, 2, 339-350.
L. M. Hancock and P. D. Beer, Chem. Comm., 2011, 47, 6012-6014
a) L. M. De León-Rodríguez, Z. Kovacs, A. C. Esqueda- Oliva, A. D.
Miranda-Olvera, Tetrahedron Letters, 2006, 47, 6937-6940; b) T.
Hirayama, M. Taki, A. Kodan, H. Kato, Y. Yamamoto, Chem.
Commun., 2009, 3196-3198.
Figure 2. Partial 1H NMR spectra in CDCl3/CD3OD 1:1 at 293 K of (a)
macrocycle 4a, (b) [2] rotaxane 8a, and (c) axle. For atom labels see
scheme 3.
macrocycle 3 and pyridine N-oxide derivative 6 in CD2Cl2
revealed no upfield perturbations of the macrocycle’s
hydroquinone protons which suggests the contribution of
aromatic donor – acceptor interactions to the overall mechanical
bond formation process is minimal and highlights the crucial
templating role of the lanthanide cation11.
The luminescence from the europium centre was also used to
probe the structure of macrocycle 4b and rotaxane 8b in 1:1
CH2Cl2:CH3OH and in 1:1 CD2Cl2:CD3OD. In the former solvent
mixture, the observed luminescence lifetime of 8b was found to
be 0.94 ms, while in deuterated media the luminescence lifetime
15 increased to 1.18 ms. Understanding solvation of even simple
systems in binary solvent mixtures is not straightforward, but
given the residual charge on the lanthanide centre, it is reasonable
to assume that any inner sphere solvent at the europium ion will
be comprised of methanol rather than DCM molecules. As such it
20 is possible to estimate q, the number of inner sphere solvent
molecules bound to the lanthanide, from the equation q =
2.4(CH3OH-1 - CD3OD-1 – 0.125 – 0.0375x), where x is the number
of exchangeable amide N-H oscillators close to the metal
centre.12 In this case, the calculated value of q is 0 if we assume
25 that all four amide N-H oscillators contribute (including the two
on the axle), which certainly equates to exclusion of methanol
from the inner coordination sphere in 8b, and suggests that the
pyridine N-oxide oxygen atom acts as an axial donor to the
lanthanide. The luminescence lifetime of 4b in 1:1
30 CH2Cl2:CH3OH is shorter and a biexponential fit gives 0.20 and
0.63 ms, indicating solvation at the europium centre in contrast to
8b.
5
4
5
10
6
7
8
9
L. M. Hancock and P. D. Beer, Chem. Eur. J., 2009, 15, 42-44
The by-products from the reaction were non-interlocked macrocycle
and axle.
85 10 Addition of
1 equivalent of axle to macrocycle 4a, in 1:1
CD2Cl2/CD3OD, revealed no perturbation of the hydroquinone
protons in the 1H NMR spectrum. This further confirms that the
upfield shifted hydroquinones observed in rotaxane 8a are due to the
interlocked nature of the axle and macrocycle components, and
demonstrates that the stopper components prevent the macrocycle
threading/dethreading. This rules out the possibility of the axle
perching on the outside of the macrocycle, and confirms that the
rotaxane is mechanically interlocked (See SI).
90
95
11 The copper (I) catalysed (CuAAC) stoppering rotaxane synthesis
reaction cannot be undertaken in the absence of the lanthanide cation
template because of the propensity of the DOTA ligand to complex
copper.
12 a) A. Beeby, I. M. Clarkson, R. S. Dickens, S. Faulkner, D. Parker, L.
Royle, A. S. de Sousa, J. A. G. Williams, M. Woods, J. Chem. Soc.,
Perkin Trans. 2, 1999, 493; b) S. Faulkner, S. J. A. Pope, B. P.
Burton-Pye, Appl. Spec. Rev., 2005, 40, 1-31.
100
In summary, the first lanthanide-cation templated synthesis of an
35 interlocked structure has been demonstrated. A pyridine N-oxide
ligand threading component coordinates to
a lutetium or
europium lanthanide complexed DOTA cyclen motif which is
itself incorporated into a macrocycle. The novel lanthanide
[2]rotaxanes are prepared through stoppering of the
40 pseudorotaxane assemblies.
F.Z. acknowledges the Ministry of Education of Spain for a
Postdoctoral contract (Programa Nacional de Movilidad de
Recursos Humanos del Plan Nacional I+D+I 2008-2011). O. A.
B. thanks the European Research Council for funding under the
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3