ACS Medicinal Chemistry Letters
Letter
experimental measures correlated well, with an R2 value of 0.86
(s = 1.14 and F = 54.1), considering compounds 1−11.
Increasing the complexity of the structure, as with 12−14,
decreased the predictive power of our DFT calculations. The
reason for this limited predictivity is probably multifactorial as it
depends both on some aproximations of B3LYP and on the use
of static geometries, which do not take into account how costly
it can be achieving the reactive conformation leading to the
transition state.29
We finally performed additional single-point calculations at a
higher level using the coupled-cluster theory with single and
double excitations (CCSD). CCSD calculations provided the
best correlation between theory and experiment (Figure S1,
Supporting Information), with an R2 of 0.88 (s = 1.06 and F =
63.9). However, the computational cost of this method
increases very rapidly with the number of atoms, which could
restrict its application to quite small molecules. From a drug
design perspective, DFT calculations, which are faster than
CCSD ones, may be a good compromise between speed and
accuracy.
The Ea values calculated by our approach can be considered
as a relative scale expressing the propensity of a nitrile group, in
a certain chemical environment, to react with thiol
nucleophiles. Our computations are substantiated by experi-
ments. They show that when the Ea is much less than 16 kcal/
mol, nitriles can react with the cysteine on a small time scale,
showing a reactivity similar to that of activated aromatic nitriles
or aminoacetonitriles. These are generally considered to be
covalent binders to biological targets. Conversely, when the Ea
value approached or overcame 20 kcal/mol (e.g., compounds 8
and 10), the cysteine nucleophilic attack was extremely slow in
our experimental conditions, with a half-life for nitrile
disappearance that could be higher than 20 h, as observed for
aliphatic nitriles or aromatic ones with conjugated electron-
donating groups. The present DFT-based tool and the
threshold value here reported could be used to predict how
promptly a nitrile will react with a cysteine, leading to a
covalent adduct. This could be extremely helpful in covalent
drug design and for predicting possible off-target liabilities for
nitrile-carrying drug candidates.
REFERENCES
■
(1) Patai, S.; Rappoport, Z. J. The Chemistry of Triple-Bonded
Functional Groups; Wiley & Sons: Chichester, U.K., 1983.
(2) Larock, R. C. Comprehensive Organic Transformations: A Guide to
Functional Group Preparations, 2nd ed.; VHC: New York, 1989.
(3) Fleming, F. F.; Wang, Q. Unsaturated nitriles: conjugate
additions of carbon nucleophiles to a recalcitrant class of acceptors.
Chem. Rev 2003, 103, 2035−2077.
(4) Miller, J. S.; Manson, J. L. Designer magnets containing cyanides
and nitriles. Acc. Chem. Res. 2001, 34, 563−570.
(5) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C.
Nitrile-containing pharmaceuticals: efficacious roles of the nitrile
pharmacophore. J. Med. Chem. 2010, 53, 7902−79 17.
(6) Le Questel, J.-Y.; Berthelot, M.; Laurence, C. Hydrogen-bond
acceptor properties of nitriles: a combined crystallographic and ab
initio theoretical investigation. J. Phys. Org. Chem. 2000, 13, 347−358.
(7) Laurence, C.; Brameld, K. A.; Graton, J.; Le Questel, J. Y.;
Renault, E. The pKBHX Database: Toward a Better Understanding of
Hydrogen-Bond Basicity for Medicinal Chemists. J. Med. Chem. 2009,
52, 4073−4086.
(8) Teno, N.; Miyake, T.; Ehara, T.; Irie, O.; Sakaki, J.; Ohmori, O.;
Gunji, H.; Matsuura, N.; Masuya, K.; Hitomi, Y.; Nonomura, K.;
Horiuchi, M.; Gohda, K.; Iwasaki, A.; Umemura, I.; Tada, S.;
Kometani, M.; Iwasaki, G.; Cowan-Jacob, S. W.; Missbach, M.;
Lattmann, R.; Betschart, C. Novel scaffold for cathepsin K inhibitors.
Bioorg. Med. Chem. Lett. 2007, 17, 6096−6100.
(9) Wang, Y.; Duraiswami, C.; Madauss, K. P.; Tran, T. B.; Williams,
S. P.; Deng, S. J.; Graybill, T. L.; Hammond, M.; Jones, D. G.;
Grygielko, E. T.; Bray, J. D.; Thompson, S. K. 2-Amino-9-aryl-3-cyano-
4-methyl-7-oxo-6,7,8,9 tetrahydropyrido[2′,3′:4,5]thieno[2,3-b]-
pyridine derivatives as selective progesterone receptor agonists. Bioorg.
Med. Chem. Lett. 2009, 19, 4916−4919.
(10) Milani, M.; Jha, G.; Potter, D. A. Anastrozole use in early stage
breast cancer of post-menopausal women. Clin. Med. Ther. 2009, 1,
141−156.
(11) Bhatnagar, A. S. The discovery and mechanism of action of
letrozole. Breast Cancer Res. Treat. 2007, 105 (Suppl 1), 7−17.
(12) Dufour, E.; Storer, A. C.; Menard, R. Peptide aldehydes and
nitriles as transition state analog inhibitors of cysteine proteases.
Biochemistry 1995, 34, 9136−9143.
(13) Singh, J.; Petter, R. C.; Baillie, T. A.; Whitty, A. The resurgence
of covalent drugs. Nat. Rev. Drug Discovery 2011, 10, 307.
(14) Frizler, M.; Lohr, F.; Furtmann, N.; Klas, J.; Gutschow, M.
Structural optimization of azadipeptide nitriles strongly increases
association rates and allows the development of selective cathepsin
inhibitors. J. Med. Chem. 2011, 54, 396−400.
(15) Frizler, M.; Stirnberg, M.; Sisay, M. T.; Gutschow, M.
Development of nitrile-based peptidic inhibitors of cysteine cathepsins.
Curr. Top. Med. Chem. 2010, 10, 294−322.
(16) Mathieu, C.; Degrande, E. Vildagliptin: a new oral treatment for
type 2 diabetes mellitus. Vasc. Health Risk Manag. 2008, 4, 1349−
1360.
ASSOCIATED CONTENT
■
S
* Supporting Information
Computational details, experimental details, geometry of all the
stationary points investigated, and correlation plots between
log(k) and Ea calculated at different levels of theory. This
material is available free of charge via the Internet at http://
(17) Li, C. S.; Deschenes, D.; Desmarais, S.; Falgueyret, J. P.;
Gauthier, J. Y.; Kimmel, D. B.; Leger, S.; Masse, F.; McGrath, M. E.;
McKay, D. J.; Percival, M. D.; Riendeau, D.; Rodan, S. B.; Therien, M.;
Truong, V. L.; Wesolowski, G.; Zamboni, R.; Black, W. C.
Identification of a potent and selective non-basic cathepsin K inhibitor.
Bioorg. Med. Chem. Lett. 2006, 16, 1985−1989.
(18) Oballa, R. M.; Truchon, J. F.; Bayly, C. I.; Chauret, N.; Day, S.;
Crane, S.; Berthelette, C. A generally applicable method for assessing
the electrophilicity and reactivity of diverse nitrile-containing
compounds. Bioorg. Med. Chem. Lett. 2007, 17, 998−1002.
(19) Gauthier, J. Y.; Chauret, N.; Cromlish, W.; Desmarais, S.;
Duong le, T.; Falgueyret, J. P.; Kimmel, D. B.; Lamontagne, S.; Leger,
S.; LeRiche, T.; Li, C. S.; Masse, F.; McKay, D. J.; Nicoll-Griffith, D.
A.; Oballa, R. M.; Palmer, J. T.; Percival, M. D.; Riendeau, D.;
Robichaud, J.; Rodan, G. A.; Rodan, S. B.; Seto, C.; Therien, M.;
Truong, V. L.; Venuti, M. C.; Wesolowski, G.; Young, R. N.; Zamboni,
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Dr. Philip MacFaul (AstraZeneca) is kindly acknowledged for
providing compound 12 (Balicatib). The authors acknowledge
the IIT Platform “Computation” for computational resources.
504
dx.doi.org/10.1021/ml400489b | ACS Med. Chem. Lett. 2014, 5, 501−505