ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Zinc Mediated AzideꢀAlkyne Ligation to
1,5- and 1,4,5-Substituted 1,2,3-Triazoles
Christopher D. Smith and Michael F. Greaney*
School of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
Received August 5, 2013
ABSTRACT
A mild method for regioselective formation of 1,5-substituted 1,2,3-triazoles is described. The zinc-mediated reaction works at room temperature
and is successful across a wide range of azido/alkynyl substrates. Additionally, the triazole 4-position can be further functionalized through the
intermediate aryl-zinc to accommodate a diverse three-component coupling strategy.
The 1,2,3-triazolehasrisen toprominence inrecent years
as a superbly versatile heterocycle, with the 1,4-isomer
being readily prepared from azide and alkyne components
using copper-catalyzed azide alkyne cycloaddition (CuAAC).1
This reaction reliably functions under mild conditions,
displays superb substrate scope, and has driven a vast range
of triazole application across the chemical, biological, and
materials sciences.2 Methods for accessing the alternate 1,5-
isomer, by contrast, are far less developed. The synthesis of
both triazole geometrical isomers has conventionally been
achieved using the thermal Huisgen cycloaddition between
azides and alkynes to afford a mixture of the 1,4- or 1,5-
substituted 1,2,3-triazoles.3 However, the separation of
these products is frequently a tedious and sometimes in-
surmountable challenge.4 Existing methods for the exclusive
construction of 1,5-triazoles require strongly basic condi-
tions, utilizing alkali5 or magnesium6 acetylides, and have
proven too demanding for many useful substrate classes.
Alternatively, bulky ruthenium catalysts7 are capable of
forming the desired 1,5-triazole (also 1,4,5-substituted
triazoles). However, the cost of using a noble metal catalyst
in this RuAAC procedure is an impediment to the develop-
ment of a general, cost-effective application.8
With these concerns in mind, a milder and more eco-
nomical route toward 1,5-substituted triazoles is sorely
(4) Landge, K. P.; Seo, Y. W.; Kwak, J.; Park, W. K.; Gong, J. Y.;
Lee, H. Y.; Koh, H. Y. Bull. Korean Chem. Soc. 2011, 32, 3101–3104.
(5) (a) Kwok, S. W.; Fotsing, J. R.; Fraser, R. J.; Rodionov, V. O.;
(1) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596–2599. (b) Tornøe, C. W.; Christensen,
C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064.
~
Fokin, V. V. Org. Lett. 2010, 12, 4217–4219. (b) Meza-Avina, M. E.;
Patel, M. K.; Lee, C. B.; Dietz, T. J.; Croatt, M. P. Org. Lett. 2011, 13,
2984–2987. (c) Wu, L.; Chen, Y.; Tang, M.; Song, X.; Chen, G.; Song,
X.; Lin, Q. Synlett 2012, 1529–1533. (d) Hong, L.; Lin, W.; Zhang, F.;
Liu, R.; Zhou, X. Chem. Commun. 2013, 49, 5589–5591.
(2) (a) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249–
1262. (b) Meldal, M. Macromol. Rapid Commun. 2008, 29, 1016–1051. (c)
Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952–3015. (d) Baxen-
dale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D. Angew. Chem., Int. Ed.
2009, 48, 4017–4021. (e) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem.;
Asian J. 2011, 6, 2696–2718. (f) Beale, T. M.; Bond, P. J.; Brenton, J. D.;
Charnock-Jones, D. S.; Ley, S. V.; Myers, R. M. Bioorg. Med. Chem. 2012,
20, 1749–1759. (g) Lewandowski, B.; De Bo, G.; Ward, J. W.; Papmeyer,
M.; Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M. E.; Heckmann, D.;
Goldup, S. M.; D’Souza, D. M.; Fernandes, A. E.; Leigh, D. A. Science
2013, 339, 189–193. (h) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K.
Chem. Rev. 2013, 113, 4905–4979.
ꢀ
(6) (a) Krasinski, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6,
1237–1240. (b) Akao, A.; Tsuritani, T.; Kii, S.; Sato, K.; Nonoyama, N.;
Mase, T.; Yasuda, N. Synlett 2007, 31–36.
(7) (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.;
Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998–
15999. (b) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao,
H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 8923–8930.
Correction: J. Am. Chem. Soc. 2008, 130, 14900. (c) Lamberti, M.;
Fortman, G. C.; Poater, A.; Broggi, J.; Slawin, A. M. Z.; Cavallo, L.;
Nolan, S. P. Organometallics 2012, 31, 756–767.
(3) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565–598.
r
10.1021/ol402225d
XXXX American Chemical Society