1576
A. H. Moustafa et al.
LETTER
Synlett 2007, 2509. (c) Campi, E. M.; Habsuda, J.; Jackson,
W. R.; Jonasson, C. A. M.; Mccubbin, Q. J. Aust. J. Chem.
1995, 48, 2023. (d) Busch, V.; Hartman, P. J. Prakt. Chem.
1895, 2, 404. (e) Paal, C. Ber. Dtsch. Chem. Ges. 1891, 24,
959. (f) Paal, C.; Krecke, F. Ber. Dtsch. Chem. Ges. 1890,
23, 2640.
It was also desirable to show that the reaction allows for
substitution of the o-nitrobenzylidene moiety. For this
purpose the chloro-substituted o-nitrobenzylidene amine
3n was prepared and cyclized under standard conditions
to yield the 2H-indazole 4n in 61% yield (Scheme 1).
(5) Frontana-Uribe, B. A.; Moinet, C. Tetrahedron 1998, 54,
3197.
(6) (a) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.;
Searle, R. J. G. J. Chem. Soc. 1965, 4831. (b) Varughese, D.
J.; Manhas, M. S.; Bose, A. K. Tetrahedron Lett. 2006, 47,
6795.
(7) Halland, N.; Nazaré, M.; R’kyek, O.; Alonso, J.; Urmann,
M.; Lindenschmidt, A. Angew. Chem. Int. Ed. 2009, 48,
6879.
i-PrOH
reflux
10 min
Cl
CHO
NO2
Cl
N
+
90%
H2N
NO2
3n
1b
2a
MoO2Cl2(dmf)2 (5 mol%)
Ph3P (2.4 equiv)
toluene
(8) Song, J. J.; Yee, N. K. Org. Lett. 2000, 2, 519.
(9) Stokes, B. J.; Vogel, C. V.; Urnezis, L. K.; Pan, M.; Driver,
T. G. Org. Lett. 2010, 12, 2884.
(10) Kumar, M. R.; Park, A.; Park, N.; Lee, S. Org. Lett. 2011,
13, 3542.
Cl
MW, 150 °C, 20 bar, 10 min
N
61%
N
4n
Scheme 1 Synthesis of 4n
(11) Hu, J.; Cheng, Y.; Yang, Y.; Rao, Y. Chem. Commun. 2011,
47, 10133.
(12) Akazome, M.; Kondo, T.; Watanabe, Y. J. Org. Chem. 1994,
59, 3375.
(13) For a review on high-valent oxomolybdenum complexes in
synthesis, see: de Noronha, R. G.; Fernandes, A. C. Curr.
Org. Chem. 2012, 16, 33.
The structures of all compounds were unambiguously elu-
cidated by NMR spectroscopy and mass spectrometry.
Structure elucidation of all compounds and full assign-
ment of the 1H and 13C chemical shifts were achieved by
evaluating their gCOSY, gHSQC, gHMBC, and NOESY
spectra.
(14) General Procedure for the Synthesis of o-
Nitrobenzylidene Amines 3
o-Nitrobenzaldehyde 1 (10 mmol) and aniline 2 (10 mmol)
in i-PrOH (3 mL) were placed in a round-bottomed flask and
heated under reflux with magnetic stirring for 10 min. The
reaction mixture was cooled to r.t., and the crystalline o-
nitrobenzylidene amine 3 was isolated by filtration. The
crude product was purified by crystallization from i-PrOH–
EtOH = 1:1.
In summary, it has been demonstrated that the reductive
cyclization of easily available o-nitrobenzylidene amines
using a catalytic system based on cheap Ph3P as a reduc-
ing agent and MoO2Cl2(dmf)2 as a catalyst under micro-
wave conditions is an efficient strategy for the facile and
selective synthesis of 2-aryl-2H-indazoles with high
yields.
(15) (a) Merişor, E.; Conrad, J.; Klaiber, I.; Mika, S.; Beifuss, U.
Angew. Chem. Int. Ed. 2007, 46, 3353. (b) Merişor, E.;
Conrad, J.; Mika, S.; Beifuss, U. Synlett 2007, 2033.
(c) Merişor, E.; Beifuss, U. Tetrahedron Lett. 2007, 48,
8383.
Acknowledgment
(16) Malakar, C. C.; Merişor, E.; Conrad, J.; Beifuss, U. Synlett
2010, 1766.
(17) General Procedure for the MoO2Cl2(dmf)2-Catalyzed
Reductive Cyclization of o-Nitrobenzylidene Amines 3 to
2-Aryl-2H-indazoles 4
Prof. Dr. Ahmed H. Moustafa is grateful to the Deutsche For-
schungsgemeinschaft for a short term grant. We thank Dipl.-Chem.
F. Mert-Balci, Dr. H. Leutbecher and Ms. S. Mika for recording of
mass and NMR spectra.
A mixture of 3 (1 mmol), Ph3P (2.4 mmol), MoO2Cl2(dmf)2
(0.05 mmol), and toluene (3 mL) was sealed in a 10 mL
septum reaction vial and irradiated with microwaves
(DiscoverTM by CEM, 2450 MHz, 300 W, 150 °C, 20 bar)
for 10 min. After filtration and removal of the solvent the
reaction mixture was poured into H2O (50 mL) and extracted
with EtOAc (3 × 30 mL). The combined organic extracts
were washed with brine (30 mL). After drying over anhyd
MgSO4 and concentration in vacuo the resulting residue was
purified by flash chromatography on silica gel
(cyclohexane–EtOAc = 20:1). Alternatively, the reaction
mixture can also be purified by flash column
chromatography without any workup procedure.
(18) SelectedDatafor2-(2,4,6-Trimethylphenyl)-2H-indazole
(4d)
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
References and Notes
(1) (a) Cerecetto, H.; Gerpe, A.; González, M.; Arán, V. J.; de
Ocáriz, C. O. Mini-Rev. Med. Chem. 2005, 5, 869.
(2) (a) Schmidt, A.; Beutler, A.; Snovydovych, B. Eur. J. Org.
Chem. 2008, 4073. (b) Stadlbauer, W. Sci. Synth. 2002, 12,
227.
(3) (a) Fedorov, A. Y.; Finet, J.-P. Tetrahedron Lett. 1999, 40,
2747. (b) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams,
J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron
Lett. 1998, 39, 2941. (c) Cerrada, M. L.; Elguero, J.; de la
Fuente, J.; Pardo, C.; Ramos, M. Synth. Commun. 1993, 23,
1947. (d) Seela, F.; Bourgeois, W. Helv. Chim. Acta 1991,
74, 315.
Rf = 0.36 (cyclohexane–EtOAc = 3:1). IR (ATR): 1627,
1518, 1490, 1377, 1349, 1267, 1195, 1144, 1044, 964, 939,
851, 782, 755, 733, 671 cm–1. UV (MeCN): λmax (log ε) =
276 nm (4.08). 1H NMR (300 MHz, CDCl3): δ = 7.96 (d, 5Ј
= 1.1 Hz, 1 H, 3-H), 7.81 [dq, 4Ј and 5Ј ~ 1.0 Hz, 3Ј (6-H, 7-
H) = 8.7 Hz, 1 H, 7-H], 7.75 [dt, 4Ј and 5Ј ~ 1.0 Hz, 3Ј (4-H,
(4) (a) Sun, F.; Feng, X.; Zhao, X.; Huang, Z.-B.; Shi, D.-Q.
Tetrahedron 2012, 68, 3851. (b) Shi, D.-Q.; Dou, G.-L.; Ni,
S.-N.; Shi, J.-W.; Li, X.-Y.; Wang, X.-S.; Wu, H.; Ji, S.-J.
Synlett 2013, 24, 1573–1577
© Georg Thieme Verlag Stuttgart · New York