ChemComm
Communication
new type of coupling of acetophenones with amines was realized,
affording a-ketoamides with good yields. This coupling features
high atom economy, easily available starting materials, a transition-
metal free process, and a wide scope of amines. Further investiga-
tions into the scope of the reaction and the synthetic applications
are ongoing in our laboratory.
The authors are grateful to the National Nature Science
Foundation of China (21272222, 21172205, 20972144, 20932002,
91213303 and J1030412) and the Ministry of Science and Technol-
ogy of China (2010CB912103).
Notes and references
1 (a) H. Tanaka, A. Kuroda, H. Marusawa, H. Hatanaka, T. Kino,
T. Goto, M. Hashimoto and T. Taga, J. Am. Chem. Soc., 1987,
109, 5031; (b) M. Hagihara and S. L. Schreiber, J. Am. Chem. Soc.,
1992, 114, 6570; (c) J. Qian, D. Cuerrier, P. L. Davies, Z. Li, J. C. Powers
and R. L. Campbell, J. Med. Chem., 2008, 51, 5264; (d) A. Ovat, Z. Z. Li,
Scheme 2 The proposed reaction mechanism.
2-hydroxy-1-phenylethanone 4b could be the precursor of 5a.
However, the experimental results indicated that 4b could not be
converted to 5a, as shown in Scheme 1 [eqn (3)]. When the amine
with a strong steric hindrance was employed as the reaction
substrate, 5a could be obtained with high yield, as shown in
Scheme 1 [eqn (4)]. This implied that 5a could come from 1a
directly. All these experimental results indicated that 5a should be
the key intermediate in the reaction.
´
C. Y. Hampton, S. A. Asress, F. M. Fernandez, J. D. Glass and
J. C. Powers, J. Med. Chem., 2010, 53, 6326; (e) Z. Li, A. C. Ortega-
Vilain, G. S. Patil and D. L. Chu, J. Med. Chem., 1996, 39, 4089.
2 (a) G. M. Dubowchik, V. M. Vrudhula, B. Dasgupta, J. Ditta, T. Chen,
S. Sheriff, K. Sipman, M. Witmer, J. Tredup, D. M. Vyas, T. A. Verdoorn,
S. Bollini and A. Vinitsky, Org. Lett., 2001, 3, 3987; (b) A. Chiou,
T. Markidis, V. Constantinou-Kokotou, R. Verger and G. Kokotos, Org.
Lett., 2000, 2, 347; (c) R. P. Singh and J. n. M. Shreeve, J. Org. Chem., 2003,
68, 6063; (d) G. M. Dubowchik, J. L. Ditta, J. J. Herbst, S. Bollini and
A. Vinitsky, Bioorg. Med. Chem. Lett., 2000, 10, 559.
In terms of the literature, the participation of iodine in the
electrochemical reaction usually involved radical initiation during
the reaction since the iodine free radical could be easily generated
via the anodic oxidation.11 On the other hand, when 2 equivalents
of TEMPO were added to the reaction mixture, the reaction was
completely suppressed (Table S1, ESI,† entry 12). This indicated
that the reaction should involve a radical process.
3 (a) J. Zhu, H. Wong, Z. Zhang, Z. Yin, J. F. Kadow, N. A. Meanwell and
T. Wang, Tetrahedron Lett., 2005, 46, 3587; (b) Z. Yang, Z. Zhang,
N. A. Meanwell, J. F. Kadow and T. Wang, Org. Lett., 2002, 4, 1103;
(c) J. E. Semple, T. D. Owens, K. Nguyen and O. E. Levy, Org. Lett., 2000,
2, 2769; (d) T. D. Ocain and D. H. Rich, J. Med. Chem., 1992, 35, 451;
(e) L. Banfi, G. Guanti and R. Riva, Chem. Commun., 2000, 985.
4 (a) H. H. Wasserman, A. K. Petersen and M. Xia, Tetrahedron, 2003,
59, 6771; (b) H. H. Wasserman and W.-B. Ho, J. Org. Chem., 1994,
59, 4364.
To investigate the reaction mechanism, the powerful electron
paramagnetic resonance (EPR) spin trapping was applied to detect
the intermediate radicals (see Fig. S1 of the ESI†). As shown in Fig. S1
(ESI†), EPR spectra were monitored with the addition of the radical
trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and a complicated
signal was acquired (spectrum a, Fig. S1, ESI†). After simulation
and careful analysis, the complicated spectrum could be ascribed to
three different active intermediate radicals trapped by DMPO,
DMPO–CH2COPh (70), DMPO–OOCH2COPh (80), and DMPO–OH
(90) complexes respectively.
5 (a) J. Liu, R. Zhang, S. Wang, W. Sun and C. Xia, Org. Lett., 2009, 11, 1321;
(b) F. Ozawa, H. Soyama, H. Yanagihara, I. Aoyama, H. Takino, K. Izawa,
T. Yamamoto and A. Yamamoto, J. Am. Chem. Soc., 1985, 107, 3235;
(c) P. Hermange, A. T. Lindhardt, R. H. Taaning, K. Bjerglund, D. Lupp
and T. Skrydstrup, J. Am. Chem. Soc., 2011, 133, 6061; (d) S. D. Friis,
R. H. Taaning, A. T. Lindhardt and T. Skrydstrup, J. Am. Chem. Soc., 2011,
133, 18114; (e) Y. Uozumi, T. Arii and T. Watanabe, J. Org. Chem., 2001,
66, 5272; ( f ) M. Iizuka and Y. Kondo, Chem. Commun., 2006, 1739;
(g) E. R. Murphy, J. R. Martinelli, N. Zaborenko, S. L. Buchwald and
K. F. Jensen, Angew. Chem., Int. Ed., 2007, 46, 1734.
6 (a) M. Bouma, G. r. Masson and J. Zhu, J. Org. Chem., 2010, 75, 2748;
(b) M. Nakamura, J. Inoue and T. Yamada, Bioorg. Med. Chem. Lett.,
2000, 10, 2807; (c) J.-M. Grassot, G. Masson and J. Zhu, Angew.
Chem., Int. Ed., 2008, 47, 947.
Based on the experimental results above, we propose a tentative
reaction pathway shown in Scheme 2. Firstly, the iodine anion is
oxygenated to the iodine free radical, and then the iodine free
radical reacts with acetophenone to generate acetophenone radical
7, which easily accepts oxygen to form 8.12 The formed 8 is unstable
and is further transformed into 2-oxo-2-phenylacetaldehyde (5a).
Then the nucleophilic attack of amine on 5a affords 10. 10 can be
oxidized to the desired product 3 in the anode. In the cathode,
ethanol is reduced to the ethoxide anion and hydrogen. Then the
reaction of the ethoxide anion with hydrogen iodide regenerates the
iodine anion.
7 (a) C. Zhang, Z. Xu, L. Zhang and N. Jiao, Angew. Chem., Int. Ed.,
2011, 50, 11088; (b) F. T. Du and J. X. Ji, Chem. Sci., 2012, 3, 460;
(c) C. Zhang and N. Jiao, J. Am. Chem. Soc., 2009, 132, 28.
8 (a) Q. Zhao, T. Miao, X. Zhang, W. Zhou and L. Wang, Org. Biomol.
Chem., 2013, 11, 1867; (b) W. Wei, Y. Shao, H. Hu, F. Zhang, C. Zhang,
Y. Xu and X. Wan, J. Org. Chem., 2012, 77, 7157; (c) X. Zhang and
L. Wang, Green Chem., 2012, 14, 2141; (d) M. Lamani and K. R. Prabhu,
Chem.–Eur. J., 2012, 18, 14638.
9 (a) W. Lubisch, E. Beckenbach and S. Bopp, J. Med. Chem., 2003,
46, 2404; (b) B. P. Smart, Y. H. Pan and A. K. Weeks, Bioorg. Med.
Chem. Lett., 2004, 12, 1737; (c) Y.-K. Lee, D. J. Parks, T. Lu and
T. V. Thieu, J. Med. Chem., 2007, 51, 282.
10 (a) J. M. Photis, Tetrahedron Lett., 1980, 21, 3539; (b) F. Y. Miyake,
K. Yakushijin and D. A. Horne, Org. Lett., 2002, 4, 941.
In conclusion, we developed an efficient synthetic method to 11 M. N. Elinson, A. I. Ilovaisky, V. M. Merkulova, F. Barba and
B. Batanero, Tetrahedron, 2008, 64, 5915.
12 (a) T. Hara, T. Iwahama, S. Sakaguchi and Y. Ishii, J. Org. Chem.,
construct the C–N bond via electrochemical oxidation. This anodic
oxidation was initiated by the iodine radical and was carried out
2001, 66, 6425; (b) W. Wu, J. Xu, S. Huang and W. Su, Chem.
using dioxygen under mild conditions. By virtue of this method, a
Commun., 2011, 47, 9660.
c
This journal is The Royal Society of Chemistry 2013
8984 Chem. Commun., 2013, 49, 8982--8984