ACS Catalysis
Page 6 of 8
A. Angew. Chem. Int. Ed. 2015, 54, 2251-2254. (w) Timmer-
man, J. C.; Laulhé, S.; Widenhoefer, R. A. Org. Lett. 2017, 19,
1466-1469.
We gratefully thank the China Scholarship Council (CSC),
CNRS, Université Paris-Sud, and Institut Universitaire de
France (IUF) for the support of this work.
1
2
(5) For representative examples of Lewis acid-catalyzed hydroami-
dation, see: (a) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shiba-
saki, M. J. Am. Chem. Soc. 2006, 128, 1611-1614. (b) Qin, H.;
Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Chem. Asian J.
2007, 2, 150-154. (c) Mathia, F.; Szolcsányi, P. Org. Biomol.
Chem. 2012, 10, 2830-2839. (d) Yang, C.-H.; Fan, W.-W.; Liu,
G.-Q.; Duan, L.; Li, L.; Li, Y.-M. RSC Adv. 2015, 5, 61081-
61093. (e) Ferrand, L.; Tang, Y.; Aubert, C.; Fensterbank, L.;
Mouriès-Mansuy, V.; Petit, M.; Amatore, M. Org. Lett. 2017,
19, 2062-2065.
(6) For representative examples of Brønsted acid-catalyzed hy-
droamidation, see: (a) Haskins, C. M.; Knight, D. W. Chem.
Commun. 2002, 2724-2725. (b) Schlummer, B.; Hartwig, J. F.
Org. Lett. 2002, 4, 1471-1474. (c) Rosenfeld, D. C.; Shekhar,
S.; Takemiya, A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett.
2006, 8, 4179-4182. (d) Leger, P. R.; Murphy, R. A.; Push-
karskaya, E.; Sarpong, R. Chem. Eur. J. 2015, 21, 4377-4383.
(7) (a) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.;
Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002,
124, 2233-2244. (b) Nguyen, T. M.; Nicewicz, D. A. J. Am.
Chem. Soc. 2013, 135, 9588-9591. (c) Nguyen, T. M.; Nice-
wicz, D. A. Angew. Chem. Int. Ed. 2014, 55, 48-57.
(8) (a) Lebœuf, D.; Marin, L.; Michelet, B.; Perez-Luna, A.; Guil-
lot, R.; Schulz, E.; Gandon, V. Chem. Eur. J. 2015, 21, 16165-
16171. (b) Marin, L.; Gandon, V.; Schulz, E.; Lebœuf, D. Adv.
Synth. Catal. 2017, 359, 1157-1163.
(9) For reviews on the use of HFIP in synthesis, see: (a) Bégué, J.-
P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18-29. (b)
Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Synthesis 2007,
2925-2943. (c) Sugiishi, T.; Matsugi, M.; Hamamoto, H.; Amii,
H. RSC Adv. 2015, 5, 17269-17282. (d) Wencel-Delord, J.;
Colobert, F. Org. Chem. Front. 2016, 3, 394-400. (e) Colomer,
I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Nat.
Rev. Chem. DOI: 10.1038/s41570-017-0088.
3
4
5
6
7
8
9
REFERENCES
(1) (a) Hagan, D. O. Nat. Prod. Rep. 2000, 17, 435-446. (b) Vitaku,
E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57,
10257-10274.
(2) (a) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada,
M. Chem. Rev. 2008, 108, 3795-3892. (b) Schafer, L. L.; Yim,
J. C. H.; Yonson, N. In Metal-Catalyzed Cross Coupling Reac-
tions and More; De Meijere, A., Bräse, S., Oestreich, M., Eds.;
Wiley-VCH: Weinheim, 2014; Vol. 3, p 1135. (c) Huang, L.;
Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Chem. Rev.
2015, 115, 2596-2697. (d) Bernoud, E.; Lepori, C.; Mellah, M.;
Schulz, E.; Hannedouche, J. Catal. Sci. Technol. 2015, 5, 2017-
2037. (e) Reznichenko, A. L.; Hultzsch, K. C. In Organic Reac-
tions; Denmark, S. E., Ed.; Wiley & Sons: New York, 2015;
Vol. 88.
(3) For more specialized reviews, see: (a) Chemler, S. R. Org.
Biomol. Chem. 2009, 7, 3009-3019. (b) Hesp, K. D.; Stradiotto,
M. ChemCatChem 2010, 2, 1192-1207. (c) Taylor, J. G.; Adrio,
L. A.; Hii, K. K. Dalton Trans. 2010, 39, 1171-1175. (d)
Hannedouche, J.; Schulz, E. Chem. Eur. J. 2013, 19, 4972-
4985. (e) Pirnot, M. T.; Wang, Y.-M.; Buchwald, S. L. Angew.
Chem. Int. Ed. 2016, 55, 48-57. (f) Lepori, C.; Hannedouche, J.
Synthesis 2017, 49, 1158-1167.
(4) For representative examples of transition-metals-catalyzed
hydroamidation, see: Fe: (a) Komeyama, K.; Morimoto, T.;
Takaki, K. Angew. Chem. Int. Ed. 2006, 45, 2938-2941. (b) Pé-
rez, S. J.; Purino, M. A.; Cruz, D. A.; López-Soria, J. M.; Car-
ballo, R. M.; Ramírez, M. A.; Fernández, I.; Martín, V. S.; Pa-
drón, J. I. Chem. Eur. J. 2016, 22, 15529-15535. (c) Zhu, L.;
Xiong, P.; Mao, Z.-Y.; Wang, Y.-H.; Yan, X.; Lu, X.; Xu, H.-
C. Angew. Chem. Int. Ed. 2016, 55, 2226-2229. Co: (d) Shi-
gehisa, H.; Kosekim N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.;
Hiroya, K. J. Am. Chem. Soc. 2014, 136, 13534-13537. Cu: (e)
Taylor, J. G.; Whittall, N.; Hii, K. K. Org. Lett. 2006, 8, 3561-
3564. (f) Turnpenny, B. W.; Hyman, K. L.; Chemler, S. R. Or-
ganometallics 2012, 31, 7819-7822. Pd: (g) Michael, F. E.;
Cochran, B. M. J. Am. Chem. Soc. 2006, 128, 4246-4247. (h)
Gurak, Jr., J. A.; Yang, K. S.; Liu, Z.; Engle, K. M. J. Am.
Chem. Soc. 2016, 138, 5805-5808. Ag: (i) Galets, Z. J.; Silvi,
M.; Wolfe, J. P. Org. Lett. 2016, 18, 2331-2334. Ir: (j) Sevov,
C. S.; Zhou, J. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134,
11960-11963. (k) Miller, D. C.; Choi, G. J.; Orbe, H. S.;
Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492-13495. (l)
Nagamoto, M.; Yanagi, T.; Nishimura, T.; Yorimitsu, H. Org.
Lett. 2016, 18, 4474-4477. Pt: (m) Karshtedt, D.; Bell, A. T.;
Tilley, T. D. J. Am. Chem. Soc. 2005, 127, 12640-12646. (n)
Qian, H.; Widenhoefer, R. A. Org. Lett. 2005, 7, 2635-2638.
Au: (o) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006,
128, 1798-1799. (p) Han, X.; Widenhoefer, R. A. Angew.
Chem. Int. Ed. 2006, 45, 1747-1749. (q) Liu, X.-Y.; Li, C.-H.;
Che, C.-M. Org. Lett. 2006, 8, 2707-2710. (r) Bender, C. F.;
Widenhoefer, R. A. Org. Lett. 2006, 8, 5303-5305. (s) Bender,
C. F.; Widenhoefer, R. A. Chem. Commun. 2006, 4143-4144.
(t) Zhang, Z.; Lee, S. D.; Widenhoefer, R. A. J. Am. Chem. Soc.
2009, 131, 5372-5373. (u) Giner, X.; Nájera, C.; Kovács, G.;
Lledós, A.; Ujaque, G. Adv. Synth. Catal. 2011, 353, 3451-
3466. (v) Timmerman, J. C.; Robertson, B. D.; Widenhoefer, R.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) For recent examples of enhancement of reactivity via the use of
HFIP, see: (a) Berkessel, A.; Adrio, J. A.; Hüttenhain, D.;
Neudörfl, J. M. J. Am. Chem. Soc. 2006, 128, 8421-8426. (b)
Berkessel, A.; Adrio, J. A. J. Am. Chem. Soc. 2006, 128, 13412-
13420. (c) Motiwala, H. F.; Fehl, C.; Li, S.-W.; Hirt, E.; Po-
rubsky, P.; Aubé, J. J. Am. Chem. Soc. 2013, 135, 9000-9009.
(d) Tian, Y.; Xu, X.; Zhang, L.; Qu, J. Org. Lett. 2016, 18, 268-
271. (e) Vekariya, R. H.; Aubé, J. Org. Lett. 2016, 18, 3534-
3537. (f) Zeng, X.; Liu, S.; Xu, B. Org. Lett. 2016, 18, 4770-
4773. (g) Colomer, I.; Barcelos, R. C.; Christensen, K. E.;
Donohoe, T. J. Org. Lett. 2016, 18, 5880-5883. (h) Dherbassy,
Q.; Schwertz, G.; Chessé, M.; Hazra, C. K.; Wencel-Delord, J.;
Colobert, F. Chem Eur. J. 2016, 22, 1735-1743. (i) Kamitanaka,
T.; Morimoto, K.; Tsuboshima, K.; Koseki, D.; Takamuro, H.;
Dohi, T.; Kita, Y. Angew. Chem. Int. Ed. 2016, 55, 15535-
15538. (j) Colomer, I.; Batchelor-McAuley, C.; Odell, B.;
Donohoe, T. J.; Compton, R. G. J. Am. Chem. Soc. 2016, 138,
8855-8861. (k) Vukovic, V. D.; Richmond, E.; Wolf, E.; Mo-
ran, J. Angew. Chem. Int. Ed. 2017, 56, 3085-3089.
(11) For reviews on Ca(II) catalysis, see: (a) Begouin, J.-M.;
Niggemann, M. Chem. Eur. J. 2013, 19, 8030-8041; (b) Topics
in Organometallic Chemistry; Harder, S., Ed.; Springer: Berlin,
2013; Vol.45. (c) Lebœuf, D.; Gandon, V. Synthesis 2017, 49,
1500-1508.
ACS Paragon Plus Environment