Communication
Dalton Transactions
the best of our knowledge this methodology has not previously
been reported and therefore constitutes the first proof-of-
concept work in this area. In essence we show that crystal
structures of chiral complexes that crystallize in polar space
groups can be quite different from their racemic counterparts
which have a marked impact on their magnetic behaviour.
These stark differences augers well for the development of new
families of magneto-optical materials, in contrast to the most
common previously reported methodology which employs the
spontaneous (i.e. entirely fortuitous) resolution of a chiral
material during the crystallization process which affords chiral
single crystals for study, but the bulk material remains a
racemic mixture, comprising a 50 : 50-mix of ‘left-handed’ and
‘right handed’ crystals. Although the magnetic properties of 3a
are modest, it is the first chiral mononuclear FeII complex to
display a LIESST. The phenyl substituents shed more light on
the correlation between the structural changes and SCO pro-
perties within this unique N3O2 system where a 7- to 6-coordi-
nation change is not the only pathway for this macrocycle.
Interestingly, the coordination equilibria between a 7- and
5-coordinate FeII N5 complex was recently demonstrated by
spectroscopic studies in solution, but has yet to be observed in
a single crystal.15 Work is currently in progress to study and
prepare new chiral FeII N3O2 derivatives and employ them as
building blocks for the self-assembly of cyanide bridged clus-
ters, chains and networks with magneto-optical and/or ferro-
electric properties. This work was financially supported by
NSERC-DG, CFI, CRC, ORF, ERA and Brock University.
F. Dahan and J.-P. Tuchagues, Angew. Chem., Int. Ed., 2003,
42, 1614; (b) C. Train, M. Grusselle and M. Verdaguer,
Chem. Soc. Rev., 2011, 40, 3297.
5 S.-I. Ohkoshi, S. Takano, K. Imoto, M. Yoshiikiyo, A. Namai
and H. Tokoro, Nat. Photonics, 2014, 8, 65.
6 (a) N. Hoshino, F. Iijima, G. N. Newton, N. Yoshida,
T. Shiga, H. Nojiri, A. Nakao, R. kumai, Y. Murakami and
H. Oshio, Nat. Chem., 2012, 4, 921.
7 (a) W. Liu, L.-L. Mao, J. Tucek, R. Zboril, J.-L. Liu, F.-S. Guo,
Z.-P. Ni and M.-L. Tong, Chem. Commun., 2014, 50, 4059;
(b) M. Yamada, H. Hagiwara, H. Torigoe, N. Matsumoto,
M. Kojima, F. Dahan, J. P. Tuchagues, N. Re and S. Iijima,
Chem. – Eur. J., 2006, 12, 4536; (c) Y. Ikuta, M. Ooidemizu,
Y. Yamahata, M. Yamada, S. Osa, N. Matsumoto, S. Iijima,
Y. Sunatsuki, M. Kojima, F. Dahan and J. P. Tuchagues,
Inorg. Chem., 2003, 42, 7001; (d) T. Sato, S. Iijima,
M. Kojima and N. Matsumoto, Chem. Lett., 2009, 178;
(e) H. Hagiwara, N. Matsumoto, S. Iijima and M. Kojima,
Inorg. Chim. Acta, 2011, 366, 283; (f) Y. Sunatsuki, Y. Ikuta,
N. Matsumoto, H. Ohta, M. Kojima, S. Ijima, S. Hayami,
Y. Maeda, S. Kaizaki, F. Dahan and J. P. Tuchagues, Angew.
Chem., Int. Ed., 2003, 42, 1614; (g) Z.-G. Gu, C.-Y. Pang,
D. Qiu, J. Zhang, J.-L. Huang, L. F. Qin, A.-Q. Sun and Z. Li,
Inorg. Chem. Commun., 2013, 35, 164.
8 (a) M. G. B. Drew, A. Hamid bin Othman, S. G. McFall,
P. D. Mcllroy and S. M. Nelson, J. Chem. Soc., Dalton Trans.,
1977, 1173; (b) S. M. Nelson, P. D. A. McIlroy,
C. S. Stevenson, E. König, G. Ritter and J. Waigel, J. Chem.
Soc., Dalton Trans., 1986, 991.
9 S. Hayami, Z.-Z. Gu, Y. Einaga, Y. Kobayasi, Y. Ishikawa,
Y. Yamada, A. Fujishima and O. Sato, Inorg. Chem., 2001,
40, 3240.
Notes and references
10 (a) Y.-Z. Zhang, B.-W. WNG, O. Sato and S. Gao, Chem.
Commun., 2010, 46, 6959; (b) Y.-Z. Zhang and O. Sato, Inorg.
Chem., 2010, 49, 1271; (c) F. Bonadio, M.-C. Senna,
J. Ensling, A. Sieber, A. Neels, H. Stoeckli-Evans and
S. Decurtins, Inorg. Chem., 2005, 44, 969; (d) S. Hayami,
G. Juhasz, Y. Maeda, T. Yokoyama and O. Sato, Inorg.
Chem., 2005, 44, 7289.
11 Q. Wang, S. Venneri, E. Gavey and J. Regier, 2014, manu-
script in preparation.
12 P. Guionneau, F. Le Gac, A. Kaiba, J. Sanchez Costa,
D. Chasseau and J. F. Letard, Chem. Commun., 2007,
3723.
13 P. Guionneau, J. S. Costa and J.-F. Letard, Acta Crystallogr.,
Sect. C: Cryst. Struct. Commun., 2004, m588.
14 H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc.,
1992, 114, 7843–7851.
15 M. Grau, J. England, R. Torres Martin de Rosales,
H. S. Rzepa, A. J. White and G. J. P. Briovsek, Inorg. Chem.,
2013, 52, 11867.
1 L. Cambi and L. Szego, Chem. Ber. Dtsch. Ges., 1931, 64,
2591.
2 (a) M. A. Halcrow, Spin-crossover Materials: Properties and
Applications, John Wiley & Sons, 2013; (b) M. A. Halcrow,
Chem. Soc. Rev., 2011, 40, 4119.
3 (a) J.-F. Letard, P. Guionneau and L. Goux-Capes, Spin
Crossover in Transition Metal Complexes III, Springer, 2004,
pp. 221–249; (b) A. Bosseksou, G. Molnar, L. Salmon and
W. Nicolazzi, Chem. Soc. Rev., 2011, 40, 3313; (c) O. Kahn
and C. J. Martinez, Science, 1998, 279, 44; (d) I. Salitros,
N. Madhu, R. Boca, J. Pavlik and M. Ruben, Monatsh.
Chem., 2009, 140, 695; (e) S. Hayami, M. R. Karim and
Y. H. Lee, Eur. J. Inorg. Chem., 2013, 683; (f) J. Linares,
E. Codjovi and Y. Garcia, Sensors, 2012, 12, 4479;
(g) V. Ksenofontov, A. B. Gaspar, G. Levchenko,
B. Fitzsimmons and P. Gütlich, J. Phys. Chem. B, 2004, 108,
8196.
4 (a) Y. Sunatsuki, Y. Ikuta, N. Matsumoto, H. Ohta,
M. Kojima, S. Iijima, S. Hayami, Y. Maeda, S. Kaizaki,
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015