that the AIEE effect is attributed to ESPT, as established by
observation of optical spectra, solution polarity effects,
pH effect, NMR spectra, IR data and crystallography.
ESPT plays a critical role not only on explaining the AIEE
effect, but also on the synthesis of further AIEE-active
compounds. In addition, we forecast that they could be used
as metal ion probes by replacing the water molecules in the
crystal structure.
We thank the financial support from the National Natural
Science Foundation of China (Grant No. 50721002, 50990061,
50802054 and 51002086), 973 program of PR China (Grant No.
2010CB630702).
Fig. 4 PL spectra of TBBF (20 mM) at different pH values (left) and
in normalized form (right) in ethanol–water mixture (1 : 9 v/v).
to form the enol molecular structure. At low pH, molecules in
the ‘‘locked’’ state are destroyed and converted into an
ammonium salt form, which dissolves in water, so the solution
is weakly emissive; at high pH, the ammonium salt form of
TBBF returns to its free amine form, which is insoluble and
aggregates in water. Thus, the stronger fluorescence coming
from the aggregate state is turned on. A similar phenomenon is
observed for TBBH (Fig. S7, ESIw). In fact, the configuration
changes caused by aggregation can be further confirmed by
NMR and IR. The ‘‘half-free’’ state of the larger conjugated
structure gives rise to an increase of the chemical shift upon
increase in concentration (Fig. S8, ESIw). From the IR spectra,
the rocking vibration peak of N–H (1661 cmꢀ1), the stretching
vibration peak of CQO (1737 cmꢀ1) and the enhanced symmetric
stretching vibration of H bonds in CH3 (2852 cmꢀ1) are
observed in solution (Fig. S9a, ESIw), however, they can not
be seen in the solid state (Fig. S9b, ESIw). All of these results
indicate the formation of new rings of the enol form due to the
configuration changes.
Notes and references
1 J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu,
H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang,
Chem. Commun., 2001, 1740.
2 (a) R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes,
R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos,
J. L. Bredas, M. Logdlund and W. R. Salaneck, Nature, 1999, 397,
121; (b) J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo,
I. D. Williams, D. Zhu and B. Z. Tang, Chem. Mater., 2003, 15,
1535; (c) G. Qian, B. Dai; M. Luo, D. Yu, J. Zhan, Z. Zhang, D. Ma
and Z. Y. Wang, Chem. Mater., 2008, 20, 6208; (d) Y. N. Hong,
J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009, 4332;
(e) Y. Liu, X. T. Tao, F. Z. Wang, X. N. Dang, D. C. Zou,
Y. Ren and M. H. Jiang, J. Phys. Chem. C, 2008, 112, 3975.
3 (a) B. Mi, Y. Dong, Z. Li, J. W. Y. Lam, M. Haussler, H. H.
Y. Sung, H. S. Kwok, Y. Dong; I. D. Williams, Y. Liu, Y. Luo,
Z. Shuai, D. B. Zhu and B. Z. Tang, Chem. Commun., 2005, 3583;
(b) G. Yu, S. Yin, Y. Liu, J. Chen, X. Xu, X. Sun, D. Ma, X. Zhan,
Q. Peng, Z. Shuai, B. Z. Tang, D. B. Zhu, W. Fang and Y. Luo,
J. Am. Chem. Soc., 2005, 127, 6335.
4 (a) S.-J. Li, B.-K. An, S.-D. Jung, M.-A. Chung and S. Y.
Park, Angew. Chem., Int. Ed., 2004, 43, 6346; (b) B.-K. An,
S.-K. Kwon, S.-D. Jung and S. Y. Park, J. Am. Chem. Soc.,
2002, 124, 14410.
5 (a) Z. Xie, B. Yang, G. Cheng, L. Liu, F. He, F. Shen, Y. Ma and
S. Liu, Chem. Mater., 2005, 17, 1287; (b) Y. Li, F. Li, H. Zhang,
Z. Xie, W. Xie, H. Xu, B. Li, F. Shen, L. Ye, M. Hanif, D. Ma and
Y. Ma, Chem. Commun., 2007, 231.
6 (a) H. Tong, Y. Dong, M. Haussler, J. W. Y. Lam, H. H.-Y. Sung,
I. D. Williams, J. Sun and B. Z. Tang, Chem. Commun., 2006, 1133;
(b) H. Tong, Y. Dong, Y. Hong, M. Haussler, J. W. Y. Lam,
H. H.-Y. Sung, X. Sun, J. Yu, I. D. Williams, H. S. Kwok and
B. Z. Tang, J. Phys. Chem. C, 2007, 111, 2287.
7 (a) R. Deans, J. Kim, M. R. Machacek and T. M. Swager, J. Am.
Chem. Soc., 2000, 122, 8565; (b) W. Holzer, A. Penzkofer,
R. Stockmann, H. Meysel, H. Liebegott and H. H. Horhold,
Polymer, 2001, 42, 3183.
8 (a) S. Kim, Q. Zheng, G. S. He, D. J. Bharali, H. E. Pudavar,
A. Baev and P. N. Prasad, Adv. Funct. Mater., 2006, 16, 2317;
(b) S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey and
P. N. Prasad, J. Am. Chem. Soc., 2007, 129, 2669; (c) J. Xu, X. Liu,
J. Lv, M. Zhu, C. Huang, W. Zhou, X. Yin, H. Liu, Y. Li and J. Ye,
Langmuir, 2008, 24, 4231; (d) A. Qin, J. W. Y. Lam, F. Mahtab,
C. K. W. Jim, L. Tang, J. Sun, H. H. Y. Sung, I. D. Williams and
B. Z. Tang, Appl. Phys. Lett., 2009, 94, 253308; (e) C. X. Yuan,
X. T. Tao, Y. Ren, Y. Li, J. X. Yang, W. T. Yu, L. Wang and
M. H. Jiang, J. Phys. Chem. C, 2007, 111, 12811.
The proposal that ESPT is operative is also supported by
crystallography (Fig. 5). The torsional angle between the back-
bone and adjacent aniline group is 29.111 and rotational
motions of the aniline group leads to weak fluorescence in
ethanol solution. In the single molecule, there are strong intra-
molecular interactions, which make TBBH easily form a new
structure containing a conjugated heptacyclic ring by O–H
and N–H bonds (Fig. S10a, ESIw) and is the reason why
TBBH has only one emission peak at 580 nm in the film state.
Besides the intramolecular interactions, there are also strong
intermolecular interactions (Table S2, ESIw). Each molecule is
fixed with eight molecules up and down by C–H–p interactions
and H–O bonds (including one water molecule) (Fig. S10b and
S10c, ESIw). These interactions lead to the large Stokes shift of
the emission peak and a gradual increase in the emission
intensity upon the addition of water.
In summary, in this work, we have successfully developed
two novel alkaloid derivatives with an AIEE effect. We propose
9 (a) O. Vendrell, M. Moreno, J. M. Luch and S. Hammes-Schiffer,
J. Phys. Chem. B, 2004, 108, 6616; (b) Chattopadhyay Nitin, Int. J.
Mol. Sci., 2003, 4, 460; (c) T. K. Mukherjee, P. Ahuja, A. L. Koner
and A. Datta, J. Phys. Chem. B, 2005, 109, 12567; (d) E. Abd
E1-Hakam Abou E1-Nasr, A. Fujii, T. Ebata and N. Mikami,
Chem. Phys. Lett., 2003, 376, 788.
10 Y. Qian, S. Li, G. Zhang, Q. Wang, S. Wang, H. Xu, C. Li, Y. Li
and G. Yang, J. Phys. Chem. B, 2007, 111, 5861.
11 (a) G. Gellerman, M. Babad and Y. Kashman, Tetrahedron Lett.,
1993, 34, 1827; (b) G. Gellerman, A. Rudi and Y. Kashman,
Tetrahedron Lett., 1993, 34, 1823.
Fig. 5 Molecular structure of TBBH (left) and packing arrangement
of TBBH in a unit cell (right).
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 2907–2909 2909