1260
E. Forró et al. / Tetrahedron: Asymmetry 22 (2011) 1255–1260
(1H, m, ArCH2), 3.2 (1H, br s, CH2N), 3.72–3.78 (2H, m, CH2OH),
3.86 (3H, s, OCH3), 3.88 (3H, s, OCH3), 4.15 (1H, br s, CH2N), 5.15
(1H, br s, CHN), 6.6 (1H, s, Ar), 6.64 (1H, s, Ar). Anal. Calcd for
88–89 °C, lit.5i mp 86–88 °C; ½a 2D5
ꢂ
¼ ꢀ61 (c 0.28, CHCl3), lit.5i
½
a 2D3
ꢂ
¼ ꢀ95 (c 1.3, CHCl3), ee = 96%}, as a colourless solid.
The 1H NMR (400 MHz, CDCl3, 25 °C, TMS) spectroscopic data
C
19H29NO5: C, 64.93; H, 8.32; N, 3.99. Found: C, 64.82; H, 8.03;
N, 4.21.
The 1H NMR (400 MHz, CDCl3, 50 °C, TMS) spectroscopic data
for (R)-1 were similar to those for (S)-1: d (ppm) = 1.69–1.95 (3H,
m, CH2CH2CH2N), 2.56–2.58 (1H, m, CH2CH2N), 2.56–2.65 (2H, m,
CH2N), 2.69–2.77 (1H, m, ArCH2), 3.05–3.22 (3H, m, CH2N and
ArCH2 overlapping), 3.41–3.43 (1H, m, CHN), 3.86 (3H, s, OCH3),
3.88 (3H, s, OCH3), 6.6 (1H, s, Ar), 6.64 (1H, s, Ar). Anal. Calcd for
for (S)-4 [R = (CH2)8Me] were similar to those for ( )-4
[R = (CH2)8Me]. Analysis: found for (S)-4 [R = (CH2)8Me]: C, 68.88;
H, 9.37; N, 2.77.
C14H19NO2: C, 72.07; H, 8.21; N, 6.00. Found for (R)-1: C, 71.88;
H, 8.29; N, 6.09. Found for (S)-1: C, 72.00; H, 8.28; N, 6.02.
4.4. Gram-scale resolution of ( )-4 [R = (CH2)8Me]
Acknowledgements
Racemic 4 [R = (CH2)8Me] (400 mg, 0.79 mmol) was dissolved in
t-BuOMe (40 mL). Lipase PS (1.2 g, 30 mg mLꢀ1) and water (14
lL,
We are grateful to the Hungarian Research Foundation (Grants
K 71938 and T 049407), and a Bolyai Fellowship for E.F. Thanks are
due to Mrs. Judit Árva for her technical assistance. We would also
like to express thanks to TÁMOP (4.2.1/B-09/1/KONV-2010-0005).
0.79 mmol) were added and the mixture was shaken at 45 °C for
54 h. The enzyme was filtered off at 24% conversion (eep = 95%).
Column chromatography under the above-mentioned conditions
afforded (S)-3 [59 mg, 21%; ½a D25
¼ þ59 (c 0.265, CHCl3); a light-
ꢂ
References
yellow oil; ee = 95%] and enantiomerically enriched 4 (259 mg,
0.51 mmol; ee = 30%). The ester (ee4 = 30%) was subjected to a sec-
ond enzymatic hydrolysis in t-BuOMe (40 mL) with lipase PS
1. Zhang, Q.; Tu, G.; Zhao, Y.; Cheng, T. Tetrahedron 2002, 58, 6795–6798.
2. (a) Rozwadowska, M. D. Heterocycles 1994, 39, 903–931; (b) Chrzanowska, M.;
Rozwadowska, M. D. Chem. Rev. 2004, 104, 3341–3370; (c) Miyazaki, M.; Ando,
N.; Sugai, K.; Seito, Y.; Fukuoka, H.; Kanemitsu, T.; Nagata, K.; Odanaka, Y.;
Nakamura, K. T.; Itoh, T. J. Org. Chem. 2011, 76, 534–542.
3. Orito, K.; Matsuzaki, T.; Suginome, H. Heterocycles 1988, 27, 2403–2412.
4. (a) Knölker, H.-J.; Agarwal, S. Tetrahedron Lett. 2005, 46, 1173–1175; (b) King, F.
D. Tetrahedron 2007, 63, 2053–2056; (c) Chiou, W.-H.; Lin, G.-H.; Hsu, C.-C.;
ChaterpaulI, S. J.; Ojima, I. Org. Lett. 2009, 11, 2659–2662; (d) Coldham, I.; Jana,
S.; Watson, L.; Martin, N. G. Org. Biomol. Chem. 2009, 7, 1674–1679; (e) Yioti, E.
G.; Mati, I. K.; Arvanitidis, A. G.; Massen, Z. S.; Alexandraki, E. S.; Gallos, J. K.
Synthesis 2011, 142–146.
5. (a) Szawkalo, J.; Zawadzka, A.; Wojtasiewicz, K.; Leniewski, A.; Maurin, J. K.;
Drabowicz, J.; Czarnocki, Z. Tetrahedron: Asymmetry 2005, 16, 3619–3621; (b)
Kanemitsu, T.; Yamashita, Y.; Nagata, K.; Itoh, T. Heterocycles 2007, 74, 199–
203; (c) Szawkalo, J.; Czarnocki, S. J.; Zawadzka, A.; Wojtasiewicz, K.;
Leniewski, A.; Maurin, J. K.; Czarnocki, Z.; Drabowicz, J. Tetrahedron:
Asymmetry 2007, 18, 406–413; (d) Bailey, K. R.; Ellis, A. J.; Reiss, R.; Snape, T.
J.; Turner, N. J. Chem. Commun. 2007, 3640–3642; (e) Allin, S. M.; Gaskell, S. N.;
Towler, J. M. R.; Page, P. C. B.; Saha, B.; McKenzie, M. J.; Martin, W. P. J. Org.
Chem. 2007, 72, 8972–8975; (f) Hou, G.-H.; Xie, J.-H.; Yan, P.-C.; Zhou, K.-L. J.
Am. Chem. Soc. 2009, 131, 1366–1367; (g) Adams, H.; Elsunaki, T. M.; Ojea-
Jiménez, I.; Jones, S.; Meijer, A. J. H. M. J. Org. Chem. 2010, 75, 6252–6262; (h)
Amat, M.; Elias, V.; Llor, N.; Subrizi, F.; Molins, E.; Bosch, J. Eur. J. Org. Chem.
2010, 4017–4026; (i) Gurram, M.; Gyimothy, B.; Wang, R.-F.; Lam, S.-Q.;
Ahmed, F.; Herr, R. J. J. Org. Chem. 2011, 76, 1605–1613.
(300 mg) and water (11 lL, 0.61 mmol), at 45 °C. The reaction
was stopped after 192 h (ees = 96%). By using the separation proce-
dure described above, the desired (R)-4 [R = (CH2)8Me] {110 mg,
28%); ½a 2D5
¼ ꢀ58 (c 0.305, CHCl3); a light-yellow oil, ee = 96%}
ꢂ
was obtained.
The 1H NMR (400 MHz, CDCl3, 50 °C, TMS) spectroscopic data
for (S)-3 were similar to those for (R)-3. Analysis: found for (S)-3:
C, 64.77; H, 8.28; N, 4.11.
The 1H NMR (400 MHz, CDCl3, 50 °C, TMS) spectroscopic data
for (R)-4 [R = (CH2)8Me] were similar to those for (S)-4
[R = (CH2)8Me] and ( )-4 [R = (CH2)8Me]. Analysis: found for (R)-4
[R = (CH2)8Me]: C, 68.71; H, 9.26; N, 2.62.
4.5. Deacylation of (S)-4 [R = (CH2)8Me] and (R)-4 [R = (CH2)8Me]
A mixture of (S)-4 [R = (CH2)8Me] (210 mg, 0.415 mmol) and
K2CO3 (0.14 g, 0.96 mmol) in MeOH (15 mL) was refluxed for 8 h.
After evaporation, the residue was dissolved in H2O (20 mL) and
extracted with Et2O. The organic phase was dried (Na2SO4), filtered
6. Xie, W. D.; Li, P. L.; Jia, Z. J. Pharmazie 2005, 60, 233–236.
7. Czarnocki, S. J.; Wojtasiewicz, K.; Józ´wiak, A. P.; Maurin, J. K.; Czarnocki, Z.;
and evaporated. The product (S)-3 {[0.13 g, 89%; ½a D25
¼ þ60 (c
ꢂ
Drabowicz, J. Tetrahedron 2008, 64, 3176–3182.
0.31, CHCl3); ee = 94%} was obtained as a light-yellow oil. Similarly,
8. Ellis, A. J.; Reiss, R.; Snape, T. J.; Turner, N. J. In Practical Methods for Biocatalysis
and Biotransformations; Whittall, J., Sutton, P. W., Eds.; John Wiley and Sons,
2009; pp 319–323.
(R)-4 [R = (CH2)8Me] (0.14 g, 0.96 mmol) afforded (R)-3 {[0.082 g,
84%; ½a 2D5
¼ ꢀ60 (c 0.2, CHCl3); ee = 96%}.
ꢂ
9. (a) Ghanem, A.; Aboul-Enein, H. Y. Tetrahedron: Asymmetry 2004, 15, 3331–
3351; (b) Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis;
Wiley-VCH, 2006. pp 106–112; (c) Högberg, H.-E. Exploiting Enantioselectivity
of Hydrolases in Organic Solvents Selectivity. In Organic Synthesis with Enzymes
in Non-aqueous Media; Carrea, G., Riva, S., Eds.; Wiley-VCH: Weinheim, 2008;
pp 75–86. Chapter 4; (d) Chenevert, R.; Morin, P.; Peichat, N. Transesterification
and Hydrolysis of Carboxylic Acid Derivatives, Alcohols, and Epoxides. In
Asymmetric Organic Synthesis with Enzymes; Gotor, V., Alfonso, I., García-
Urdiales, E., Eds.; Wiley-VCH, 2008; pp 133–171.
10. (a) Jouglet, B.; Rousseau, G. Tetrahedron Lett. 1993, 34, 2307–2310; (b) Csomós,
P.; Fülöp, F.; Kanerva, L. T. Tetrahedron: Asymmetry 1996, 7, 1789–1796; (c)
Kámán, J.; Forró, E.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 1881–1886; (d)
Forró, E.; Árva, J.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 643–649; (e)
Forró, E.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 2351–2358; (f) Isleyen, A.;
Tanyeli, C.; Dogan, Ö. Tetrahedron: Asymmetry 2006, 17, 1561–1567; (g)
Valente, E.; Gomes, J. R. B.; Moreira, R.; Iley, J. J. Org. Chem. 2004, 69, 3359–
3367; (h) Sabbani, S.; Hedenström, E.; Andersson, J. Tetrahedron: Asymmetry
2007, 18, 1712–1720.
4.6. Synthesis of crispine A enantiomers (R)-1 and (S)-1
Alcohol (ꢀ)-3 or (+)-3 (100 mg, 0.28 mmol) was dissolved in
CH2Cl2 (7 mL). Thionyl chloride (100 mg, 0.84 mmol) was added.
After stirring for 2 h at 40 °C, the reaction mixture was cooled to
below 20 °C and a solution of NaOH (5 N) was added until pH
P9. After a further stirring for 1 h at room temperature, the reac-
tion was quenched with 10 mL water. The CH2Cl2 layer was dried
over anhydrous Na2SO4 and evaporated. The oily residue was puri-
fied by column chromatography, with CHCl3:MeOH (9:1) as eluent.
The product was crystallised from Et2O as the desired crispine A
enantiomer (R)-1 {55 mg (83%); mp 87–89 °C, lit.1 mp 88–89 °C;
lit.5i mp 86–88 °C; ½a 2D5
ꢂ
¼ þ82 (c 0.255, MeOH), lit.5e
½
a 2D5
ꢂ
¼
11. Rosen, C. T.; Haufe, G. Tetrahedron: Asymmetry 2002, 13, 1397–1405.
12. (a) Lázár, L.; Fülöp, F.; Bernáth, G.; Mattinen, J. Org. Prep. Proc. 1993, 25, 91–97;
(b) Campbell, J. A.; Lee, W. K.; Rapoport, H. J. Org. Chem. 1995, 60, 4602–4616.
13. Nagai, H.; Shiozawa, T.; Achiwa, K.; Terao, Y. Chem. Pharm. Bull. 1993, 41, 1933–
1938.
þ43:9 (MeOH), lit.1
½
a 2D5
ꢂ
¼ þ91:0 (MeOH), ½a D25
¼ þ60 (c 0.255,
ꢂ
CHCl3), lit.5a
½
a 2D3
ꢂ
¼ þ100:4 (c 1, CHCl3), lit.5i
½
a 2D3
ꢂ
¼ þ96:9 (c 1.1,
CHCl3), ee = 95%} or (S)-1 {52 mg, 78 %; mp 87–89 °C, lit.1,5e mp