A R T I C L E S
Larsen et al.
(R or â) of the starting materials 1 and 3 does not determine
the stereochemistry of the products, these reactions likely
proceed via oxocarbenium ions 5.16 Evidently, the nucleophile
approaches the electrophilic carbon from the face bearing the
two alkoxy groups at C-2 and C-3. To explain the counter-
intuitive stereochemical outcome shown in eq 1, various
arguments have been offered, such as involvement of the
counterion and solvent.12,17,18 These arguments, however, are
unsatisfying because the selectivities are only marginally
affected by solvent, Lewis acid, anomeric leaving group, and
carbon-based nucleophile (eq 1).19-24 The generality of the
R-selective substitution suggests that the selectivity is the result
of an inherent stereochemical bias of the substituted oxocar-
benium ion 5 and not a result of external variables.
tronic effects should control the approach of the nucleophile to
a five-membered ring oxocarbenium ion.37-39 Experiments
involving conformationally constrained five-membered ring
oxocarbenium ions revealed that attack on the prototypical
oxocarbenium ion 6 occurred preferentially (up to 96:4 selectiv-
ity) from “inside” the envelope to form the staggered product
7 (eq 3).38 Destabilizing steric effects that emerge in transition
structures also influence selectivities,26,39 in accordance with
the Curtin-Hammett principle.40 The magnitude of such effects
is difficult to estimate a priori, since the precise transition
structures for nucleophilic attack on oxocarbenium ions have
not been located and are likely to depend on substitution
patterns.41
The conformational analysis of heteroatom-substituted six-
membered ring oxocarbenium ions allows for an understanding
of the behavior of five-membered ring analogues (vide infra).
While alkyl groups in six-membered ring oxocarbenium ions
prefer equatorially substituted conformers, heteroatom-contain-
ing functional groups reside in pseudoaxial orientations at certain
positions of the ring.25,26,42 With the alkoxy group situated in
the pseudoaxial position, an attractive electrostatic interaction
between the cationic carbon and partially negatively charged
substituent is maximized. This paradoxical conformational
preference is supported by computational43,44 and experimental
studies with six-membered ring oxocarbenium ions25,26,42,45-49
and iminium ions50-52 and operates in the rates of oxocarbenium
ion generation.53,54 As will be demonstrated, the selectivities
exhibited by ribose-derived oxocarbenium ions find close
analogy to our studies with the six-membered ring systems.25,26,42
The challenges associated with understanding the perplexing
selectivities shown in eqs 1 and 2 prompted us to investigate
the origin of stereoselective reactions of highly oxygenated five-
membered ring oxocarbenium ions such as 5. In this article,
we demonstrate that electronic 25,26 and stereoelectronic effects
dominate the selectivity exhibited by ribose-derived acetal 1
(eq 1). We also show that the conclusions gleaned from the
study of ribose-derived acetals allow for predictions of stereo-
chemical courses for new reactions.
Our earlier studies of oxocarbenium ions indicate that five-
and six-membered ring oxocarbenium ions display parallel
selectivity patterns, suggesting that similar influences control
the stereoselectivities of the two related systems. Because five-
membered ring systems undergo conformational interconver-
sions more rapidly than six-membered rings,1,27,28 it is more
challenging to develop stereochemical models, and therefore
few attempts to codify these reactions have emerged.29-32 Five-
membered rings do exhibit discrete minima, however, as has
been demonstrated for ribose systems.33 Consequently, as
established with six-membered ring systems,34-36 stereoelec-
(36) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Perga-
mon: New York, 1983; pp 209-221.
(37) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel, K. A. J. Am. Chem.
Soc. 1999, 121, 12208-12209.
(38) Smith, D. M.; Tran, M. B.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125,
14149-14152.
(16) Lowary has shown that O-glycosylation of furanosyl triflates occurs with
inversion of configuration: Callam, C. S.; Gadikota, R. R.; Krein, D. M.;
Lowary, T. L. J. Am. Chem. Soc. 2003, 125, 13112-13119.
(17) Jaouen, V.; Je´gou, A.; Leme´e, L.; Veyrie`res, A. Tetrahedron 1999, 55,
9245-9260.
(18) Nishiyama, Y.; Katoh, T.; Deguchi, K.; Morimoto, Y.; Itoh, K. J. Org.
Chem. 1997, 62, 9339-9341.
(19) Stewart, A. O.; Williams, R. M. J. Am. Chem. Soc. 1985, 107, 4289-
4296.
(39) Smith, D. M.; Woerpel, K. A. Org. Lett. 2004, 6, 2063-2066.
(40) Seeman, J. I. Chem. ReV. 1983, 83, 83-134.
(41) Five-membered ring iminium ions are believed to undergo nucleophilic
attack by similar transition structures to those for oxocarbenium ions: Bur,
S. K.; Martin, S. F. Org. Lett. 2000, 2, 3445-3447.
(42) Chamberland, S.; Ziller, J. W.; Woerpel, K. A. J. Am. Chem. Soc. 2005,
127, 5322-5323.
(43) Woods, R. J.; Andrews, C. W.; Bowen, J. P. J. Am. Chem. Soc. 1992, 114,
859-864.
(20) Bennek, J. A.; Gray, G. R. J. Org. Chem. 1987, 52, 892-897.
(21) Mukaiyama, T.; Kobayashi, S. Carbohydr. Res. 1987, 171, 81-87.
(22) Mukaiyama, T.; Shimpuku, T.; Takashima, T.; Kobayashi, S. Chem. Lett.
1989, 145-148.
(44) Miljkovic, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y. L. J. Org. Chem.
1997, 62, 7597-7604.
(45) Roush, W. R.; Sebesta, D. P.; Bennett, C. E. Tetrahedron 1997, 53, 8825-
(23) O’Leary, D. J.; Kishi, Y. J. Org. Chem. 1994, 59, 6629-6636.
(24) Hachiya, I.; Kobayashi, S. Tetrahedron Lett. 1994, 35, 3319-3320.
(25) Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A. J. Am. Chem. Soc. 2000,
122, 168-169.
8836.
(46) Hosokawa, S.; Kirschbaum, B.; Isobe, M. Tetrahedron Lett. 1998, 39,
1917-1920.
(47) Isobe, M.; Saeeng, R.; Nishizawa, R.; Konobe, M.; Nishikawa, T. Chem.
Lett. 1999, 467-468.
(26) Ayala, L.; Lucero, C. G.; Romero, J. A. C.; Tabacco, S. A.; Woerpel, K.
A. J. Am. Chem. Soc. 2003, 125, 15521-15528.
(48) Saeeng, R.; Isobe, M. Tetrahedron Lett. 1999, 40, 1911-1914.
(49) Chong, P. Y.; Roush, W. R. Org. Lett. 2002, 4, 4523-4526.
(50) Shono, T.; Matsumura, Y.; Onomura, O.; Sato, M. J. Org. Chem. 1988,
53, 4118-4121.
(27) Altona, C.; Sundaralingam, M. J. Am. Chem. Soc. 1972, 94, 8205-8212.
(28) Fuchs, B. Top. Stereochem. 1978, 10, 1-94.
(29) Schmitt, A.; Reissig, H.-U. Synlett 1990, 40-42.
(30) Schmitt, A.; Reissig, H.-U. Chem. Ber. 1995, 128, 871-876.
(31) Schmitt, A.; Reissig, H.-U. Eur. J. Org. Chem. 2000, 3893-3901.
(32) Schmitt, A.; Reissig, H.-U. Eur. J. Org. Chem. 2001, 1169-1174.
(33) Brameld, K. A.; Goddard, W. A., III. J. Am. Chem. Soc. 1999, 121, 985-
993.
(51) Herdeis, C.; Engel, W. Tetrahedron: Asymmetry 1991, 2, 945-948.
(52) Vink, M. K. S.; Schortinghuis, C. A.; Luten, J.; van Maarseveen, J. H.;
Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T. J. Org. Chem. 2002,
67, 7869-7871.
(53) Jensen, H. H.; Bols, M. Org. Lett. 2003, 5, 3419-3421.
(54) McDonnell, C.; Lo´pez, O.; Murphy, P.; Bolan˜os, J. G. F.; Hazell, R.; Bols,
M. J. Am. Chem. Soc. 2004, 126, 12374-12385.
(34) Stevens, R. V.; Lee, A. W. M. J. Am. Chem. Soc. 1979, 101, 7032-7035.
(35) Stevens, R. V. Acc. Chem. Res. 1984, 17, 289-296.
9
10880 J. AM. CHEM. SOC. VOL. 127, NO. 31, 2005