Organometallics
Article
(11) Ghosh, S.; Rahaman, A.; Holt, K. B.; Nordlander, E.;
Richmond, M. G.; Kabir, S. E.; Hogarth, G. Hydrogenase biomimetics
with redox-active ligands: Electrocatalytic proton reduction by
[Fe2(CO)4(κ2-diamine)(l-edt)] (diamine = 2, 2’-bipy, 1,10-phen).
Polyhedron 2016, 116, 127−135.
[FeFe] Hydrogenase Active Site. Eur. J. Inorg. Chem. 2015, 2015,
2875−2882.
(28) Chen, L.; Wang, M.; Gloaguen, F.; Zheng, D.; Zhang, P.; Sun,
L. Tetranuclear Iron Complexes Bearing Benzenetetrathiolate Bridges
as Four-Electron Transformation Templates and Their Electro-
catalytic Properties for Proton Reduction. Inorg. Chem. 2013, 52,
1798−1806.
(12) He, J.; Deng, C.-L.; Li, Y.; Li, Y.-L.; Wu, Y.; Zou, L.-K.; Mu, C.;
Luo, Q.; Xie, B.; Wei, J.; Hu, J.-W.; Zhao, P.-H.; Zheng, W. A New
Route to the Synthesis of Phosphine-Substituted Diiron Aza- and
Oxadithiolate Complexes. Organometallics 2017, 36, 1322−1330.
(29) Streich, D.; Astuti, Y.; Orlandi, M.; Schwartz, L.; Lomoth, R.;
̈
Hammarstrom, L.; Ott, S. High-Turnover Photochemical Hydrogen
Production Catalyzed by a Model Complex of the [FeFe]-Hydro-
̈
(13) Abul-Futouh, H.; Almazahreh, L. R.; Harb, M. K.; Gorls, H.; El-
genase Active Site. Chem. - Eur. J. 2010, 16, 60−63.
khateeb, M.; Weigand, W. [FeFe]-Hydrogenase H−Cluster Mimics
with Various − S(CH2)nS− Linker Lengths (n = 2−8): A Systematic
Study. Inorg. Chem. 2017, 56, 10437−10451.
(30) Pullen, S.; Roy, S.; Ott, S. [FeFe] Hydrogenase active site
model chemistry in a UiO-66 metal−organic framework. Chem.
Commun. 2017, 53, 5227−5230.
(14) Carroll, M. E.; Barton, B. E.; Rauchfuss, T. B.; Carroll, P. J.
Synthetic Models for the Active Site of the [FeFe]-Hydrogenase:
Catalytic Proton Reduction and the Structure of the Doubly
Protonated Intermediate. J. Am. Chem. Soc. 2012, 134, 18843−18852.
(15) Wang, F.; Wang, W.-G.; Wang, X.-J.; Wang, H.-Y.; Tung, C. H.;
Wu, L.-Z. A Highly Efficient Photocatalytic System for Hydrogen
Production by a Robust Hydrogenase Mimic in an Aqueous Solution.
Angew. Chem., Int. Ed. 2011, 50, 3193−3197.
(31) Lv, H.; Ruberu, T. P. A.; Fleischauer, V. E.; Brennessel, W. W.;
Neidig, M. L.; Eisenberg, R. Catalytic Light-Driven Generation of
Hydrogen from Water by Iron Dithiolene Complexes. J. Am. Chem.
Soc. 2016, 138, 11654−11663.
(32) Roy, S.; Mazinani, S. K. S.; Groy, T. L.; Gan, L.; Tarakeshwar,
P.; Mujica, V.; Jones, A. K. Catalytic Hydrogen Evolution by Fe(II)
Carbonyls Featuring a Dithiolate and a Chelating Phosphine. Inorg.
Chem. 2014, 53, 8919−8929.
(16) Liu, Y.-C.; Lee, C.-H.; Lee, G.-H.; Chiang, M. H. Influence of a
Redox-Active Phosphane Ligand on the Oxidations of a Diiron Core
Related to the Active Site of Fe-Only Hydrogenase. Eur. J. Inorg.
Chem. 2011, 2011, 1155−1162.
(33) Kaur-Ghumaan, S.; Schwartz, L.; Lomoth, R.; Stein, M.; Ott, S.
Catalytic Hydrogen Evolution from Mononuclear Iron(II) Carbonyl
Complexes as Minimal Functional Models of the [FeFe] Hydrogenase
Active Site. Angew. Chem., Int. Ed. 2010, 49, 8033−8036.
(34) Beyler, M.; Ezzaher, S.; Karnahl, S.; Santoni, M.-P.; Lomoth, R.;
Ott, S. Pentacoordinate iron complexes as functional models of the
distal iron in [FeFe] hydrogenases. Chem. Commun. 2011, 47,
11662−11664.
(17) Ott, S.; Kritikos, M.; Åkermark, B.; Sun, L. Synthesis and
Structure of a Biomimetic Model of the Iron Hydrogenase Active Site
Covalently Linked to a Ruthenium Photosensitizer. Angew. Chem., Int.
Ed. 2003, 42, 3285−3288.
̈
(18) Ekstrom, J.; Abrahamsson, M.; Olson, C.; Bergquist, J.; Kaynak,
(35) Gardner, J. M.; Beyler, M.; Karnahl, M.; Tschierlei, S.; Ott, S.;
F. B.; Eriksson, L.; Sun, L.; Becker, H.-C.; Åkermark, B.;
̈
Hammarstrom, L. Light-Driven Electron Transfer between a Photo-
̈
Hammarstrom, L.; Ott, S. Bio-inspired, side-on attachment of a
sensitizer and a Proton-Reducing Catalyst Co-adsorbed to NiO. J. Am.
Chem. Soc. 2012, 134, 19322−19325.
ruthenium photosensitizer to an iron hydrogenase active site model.
Dalton 2006, 4599−4606.
(36) Orthaber, A.; Karnahl, M.; Tschierlei, S.; Streich, D.; Stein, M.;
Ott, S. Coordination and conformational isomers in mononuclear iron
complexes with pertinence to the [FeFe] hydrogenase active site.
Dalton Trans. 2014, 43, 4537−4549.
̈
(19) Ott, S.; Borgstrom, M.; Kritikos, M.; Lomoth, R.; Bergquist, J.;
̈
Åkermark, B.; Hammarstrom, L.; Sun, L. Model of the Iron
Hydrogenase Active Site Covalently Linked to a Ruthenium
Photosensitizer: Synthesis and Photophysical Properties. Inorg.
Chem. 2004, 43, 4683−4692.
(37) Eady, S. C.; Breault, T.; Thompson, L.; Lehnert, N. Highly
functionalizable penta-coordinate iron hydrogen production catalysts
with low overpotentials. Dalton Trans. 2016, 45, 1138−1151.
(38) Natarajan, M.; Faujdar, H.; Mobin, S. M.; Stein, M.; Kaur-
Ghumaan, S. A mononuclear iron carbonyl complex [Fe(μ-bdt)-
(CO)2 (PTA)2] with bulky phosphine ligands: a model for the [FeFe]
hydrogenase enzyme active site with an inverted redox potential.
Dalton Trans. 2017, 46, 10050−10056.
(39) Yap, C. P.; Hou, K.; Bengali, A. A.; Fan, W. Y. A Robust
Pentacoordinated Iron(II) Proton Reduction Catalyst Stabilized by a
Tripodal Phosphine. Inorg. Chem. 2017, 56, 10926−10931.
(40) McNamara, W. R.; Han, Z.; Alperin, P. J.; Brennessel, W. W.;
Holland, P. L.; Eisenberg, R. A Cobalt Dithiolene Complex for the
Photocatalytic and Electrocatalytic Reduction of Protons. J. Am.
Chem. Soc. 2011, 133, 15368−15371.
(41) McNamara, W. R.; Han, Z.; Yin, C.-J.; Brennessel, W. W.;
Holland, P. L.; Eisenberg, R. Cobalt-dithiolene complexes for the
photocatalytic and electrocatalytic reduction of protons in aqueous
solutions. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15594−15599.
(42) Eady, S. C.; Peczonczyk, S. L.; Maldonado, S.; Lehnert, N.
Facile heterogenization of a cobalt catalyst via graphene adsorption:
robust and versatile dihydrogen production system. Chem. Commun.
2014, 50, 8065−8068.
(43) Eady, S. C.; MacInnes, M. M.; Lehnert, N. Immobilized Cobalt
Bis(benzenedithiolate) Complexes: Exceptionally Active Heteroge-
neous Electrocatalysts for Dihydrogen Production from Mildly Acidic
Aqueous Solutions. Inorg. Chem. 2017, 56, 11654−11667.
(44) Gan, L.; Groy, T. L.; Tarakeshwar, P.; Mazinani, S. K. S.;
Shearer, J.; Mujica, V.; Jones, A. K. A Nickel Phosphine Complex as a
Fast and Efficient Hydrogen Production Catalyst. J. Am. Chem. Soc.
2015, 137, 1109−1115.
(20) Song, L.-C.; Tang, M.-Y.; Su, F.-H.; Hu, Q.-M. A Biomimetic
Model for the Active Site of Iron-only Hydrogenases Covalently
Bonded to a Porphyrin Photosensitizer. Angew. Chem., Int. Ed. 2006,
45, 1130−1133.
(21) Samuel, A. P. S.; Co, D. T.; Stern, C. L.; Wasielewski, M.
Ultrafast Photodriven Intramolecular Electron Transfer from a Zinc
Porphyrin to a Readily Reduced Diiron Hydrogenase Model
Complex. J. Am. Chem. Soc. 2010, 132, 8813−8815.
(22) Song, L.-C.; Luo, F.-X.; Liu, B.-B.; Gu, Z.-C.; Tan, H. Novel
Ruthenium Phthalocyanine-Containing Model Complex for the
Active Site of [FeFe]-Hydrogenases: Synthesis, Structural Character-
ization, and Catalytic H2 Evolution. Organometallics 2016, 35, 1399−
1408.
(23) Capon, J.-F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J.
Catalysis of the electrochemical H2 evolution by di-iron sub-site
models. Coord. Chem. Rev. 2005, 249, 1664−1676.
(24) Gloaguen, F.; Rauchfuss, T. B. Small molecule mimics of
hydrogenases: hydrides and redox. Chem. Soc. Rev. 2009, 38, 100−
108.
(25) Gloaguen, F. Electrochemistry of Simple Organometallic
Models of Iron−Iron Hydrogenases in Organic Solvent and Water.
Inorg. Chem. 2016, 55, 390−398.
(26) Streich, D.; Karnahl, M.; Astuti, Y.; Cady, C. W.;
̈
Hammarstrom, L.; Lomoth, R.; Ott, S. Comparing the Reactivity of
Benzenedithiolate- versus Alkyldithiolate- Bridged Fe2(CO)6 Com-
plexes with Competing Ligands. Eur. J. Inorg. Chem. 2011, 2011,
1106−1111.
(27) Pandey, I. K.; Mobin, S. M.; Deibel, N.; Sarkar, B.; Kaur-
Ghumaan, S. Diiron Benzenedithiolate Complexes Relevant to the
J
Organometallics XXXX, XXX, XXX−XXX